- •1. Основные понятия
- •2. Динамическое представление сигналов
- •5. Ряды Фурье периодических сигналов
- •7. Спектральное представление одиночных сигналов. Интеграл Фурье. Спектры гауссовского сигнала, ф-ции Дирака, Хевисайда
- •12. Свойства автокорреляционной функции.
- •1 3. Функция автокорреляции дискретных сигналов
- •6. Спектральное представление одиночных сигналов. Интеграл Фурье. Спектры постоянного напряжения, гармонического сигнала, прямоугольного и ам импульса.
- •15. Амплитудно-модулированный радиосигнал
- •16. Дискретизация узкополосных сигналов
- •17. Сигналы с угловой модуляцией. Чм и фм.
- •18. Сигналы с угловой модуляцией. Чм и фм.
- •19. Принципы построения вч модуляторов
- •14. Виды модуляции. Условие узкополосности
1. Основные понятия
Радиоэлектроника - ряд областей науки и техники, связанных с передачей и преобразованием инфы на основе электромагнитных колебаний и волн. радиоэлектронику разделяют на 2 области:
1 Радиотехника – научно-техническая область:
изучает принципы генерации, усиления, излучения и приёма электромагнитных колебаний и волн, в диапазоне (от 3 Гц до 3 ТГц).
практическое использование колебаний и волн для передачи, хранения и преобразования инфы.
2 Электроника характеризуется использованием взаимодействия электронов с электромагнитным полем для создания вакуумных и полупроводниковых приборов.
Информация - сведения, являющиеся объектом хранения, передачи и обработки.
П ередача сообщений от источника к получателю с помощью радиотехнических методов осуществляется по радиоканалу (см. рис).
Сигнал, поступающий от первичного источника сообщений (ИС), преобразуется в электрические колебания (Пр). В радиотехнике применяют модуляция (М) несущего колебания - способ передачи сигналов, при котором низкочастотные колебания, содержащие исходные сообщения, с помощью специальных устройств управляют параметрами мощного несущего колебания, частота которого лежит в радиодиапазоне..
3 типа модуляции: амплитудная (АМ), частотная (ЧМ) и фазовая (ФМ). (изменяется 1 из параметров: амплитуда, частота или фаза) АМ – самый узкополосный вид модуляции. .
Ч М –более широкополосный его чаще используют на практике (радиостанции FM – диапазона используют ЧМ). Несущая частота ->.
ФМ – тоже широкополосная, слабое место: на практике очень сложно синхронизировать момент отсчёта у принимающей и передающей стороны и приходится передавать дополнительные синхронизирующие импульсы.
п ринимающая сторона канала связи:
Модулированный сигнал излучается антенной передатчика. Возбуждённые электромагнитные волны вызывают появление в антенне приёмника радиосигнала. После частотной фильтрации (УВЧ) и усиления (УПЧ) сигнал подвергается демодуляции (Д). на выходе приёмника возникает колебание, - копия переданного исходного сообщения.
Классификация сигналов. Для изучения сигналов надо создать математ модель исследуемого сигнала. Пример функциональная зависимость, аргумент- время. Функции, описывающие сигналы, могут принимать вещественные и комплексные значения. Использование того или иного принципа определяется математическим удобством. Зная математические модели сигналов, можно сравнивать эти сигналы. критерии:
по размерности сигналы делятся на:
одномерные, которые описываются одномерной функцией времени s(t).
многомерные, образованные множеством одномерных:
по каузальности сигналы делятся на:
детерминированные – математическая модель которых позволяет предсказать их значение в любой момент времени.
случайные – невозможно предсказать. Помехи
по способу представления значения сигналы:
аналоговые
дискретные
цифровые
Аналоговые сигналы описывают физический процесс, значения сигнала можно измерять в любые моменты времени. Одномерный аналоговый сигнал наглядно представляется своим графиком.
и мпульс - колебание, существующее в пределах конечного отрезка времени. различают видеоимпульсы (на рисунке слева) и радиоимпульсы (на рисунке справа). В расчётах часто пользуются числовыми параметрами, дающими упрощённое представление о его форме. Принято определять амплитуду A, длительность , длительность фронта ф и длительность среза с.
д искретные. Их простейшая математическая модель Sд(t) - это счётное множество точек {ti} на оси времени, в каждой из которых определено отсчётное значение сигнала Si шаг дискретизации для каждого сигнала постоянен. преимущество – отсутствие необходимости воспроизводить сигнал непрерывно во все моменты времени, разновидность - сигналы цифровые. отсчётные значения представлены в форме чисел. Обычно используются двоичные числа. Цифровые сигналы в последнее время находят всё большее применение в микроэлектронике и интегральной схемотехнике.