
- •1.Химический состав нефти
- •2.Химическа классификация нефтей
- •3.Ароматические углеводороды в нефтях,их значение как компанентов топлив и масел и как сырьё для органического синтеза
- •4. Пути изучения химического состава нефти. Методы фракционирования: перегонка, кристаллизация, экстракция, хроматография, термодиффузия, комплексобразование с мочевиной.
- •Фракционирование
- •Жидкостная термодиффузия
- •Кристаллизация
- •Хроматография жидких компонентов нефти
- •Хроматография на гелях
- •Спектральные методы анализа и идентификации
- •5. Изучение продуктов фракционирования на основании физических характеристик фракций.
- •Плотность
- •Показатель преломления
- •Удельная и молекулярная рефракции
- •Удельная дисперсия
- •Интерцепт рефракции
- •Химические реакции, применяемые для изучения состава углеводородов.
- •Действие серной кислоты.
- •Действие галоидов
- •Выделение олефинов с помощью полухлористой серы
- •Количественное определение олефинов методом кислородных чисел
- •Выделение непредельных углеводородов при помощи солей ртути
- •Идентификация алкенов с помощью реакции окисления
- •7.1 Озонирование:
- •7.2 Реакция исчерпывающего окисления:
- •Определение диолефинов при помощи малеинового ангидрида
- •Определение нафтеновых углеводородов
- •7. Методы выделения и идентификации алкенов , диенов, ароматических ,нафтеновых и алкановых ув.
- •8 Изучение химического состава ув нефти в виде ее отдельных фракций. Химический состав прямогонных бензинов
- •Химический состав керосино-газойлевых фракций
- •Нафтено-ароматические углеводороды
- •Химический состав вакуумных дистиллятов
- •9. Определение группового состава.
- •10. Анализ структурно-группового состава масел.
- •12.Химический состав масел и их эксплутационные свойства
- •13.Химический состав керосина и методы анализа его фракций
- •14. Детанационная характеристика топлив и мехонизм детонации
- •15. Кислородосодержащие соединения. Нафтеновые к-ты и их свойства. Области примменения
- •16. Строение нафтеновых к-т. Содержание их в нефти, нефтепродуктах, выделение и анализ. Применение нафтеновых к-т
- •17.Серосодержащие соединения нефти, их разновидности, физические и химические свойства
- •18. Качественный анализ сернистых соединений, количественное содержание в сернистых нефтях.
- •19. Групповой анализ сернистых соединений.
- •20. Влияние сернистых соединений на эксплуатационные и экологические свойства нефтепродуктов.
- •21. Смолисто-асфальтеновые вещества нефти и продуктов переработки, их классификация.
- •22. Характеристика состава и свойств отдельных групп сав.
- •Асфальтогеновые кислоты
- •Химическая природа смол
- •23. Содержание сав в нефтях и нефтепродуктах, их образование в процессах переработки нефти.
- •24. Влияние сав на свойства нефтепродуктов и катализаторы процессов глубокой переработки нефти.
- •25. Катализаторы и каталитические реакции в нефтепереработке. Классификация каталитических реакций. Активность, селективность и стабильность катализаторов.
- •26. Алкилирование изобутана бутиленами: тд процесса; механизм процесса; катализаторы; сырьё алкилирования; факторы, влияющие на процесс: т, с изобутана, контакт между фазами, р.
- •27. Полимеризация олефинов с целью получения компонента бензина: тд и механизм процесса; катализатор; факторы, влияющие на процесс: т, р, сырьё, объёмная скорость.
- •Превращения циклоалканов.
- •29.Изомеризация н.Парафиновых у/в…
- •34.Термический распад молекул на радикалы, энергия связи, энергия активации реакций деструктивного распада.
- •35.Реакции радикалов: замещение, присоединение, распад, изомеризация, рекомбинация, диспропорционирование.
- •36.Цепные реакции, терминология теории неразветвленных цепных реакций.
- •38.Применение оптических (спектральных) методов исследования в химии нефти для контроля за качеством сырья и промышленной продукции нефтепереработки и нефтехимии.
14. Детанационная характеристика топлив и мехонизм детонации
Детонацией называется особый ненормальный характер сгорания топлива в двигателе, при котором только часть рабочей смеси после воспламенения от искры сгорает с нормальной скоростью. Несгоревшая часть рабочей смеси в какой-то момент цикла мгновенно самовоспламеняется и скорость распространения пламени возрастает до 2500 – 3000 м/с, а давление возрастает резкими скачками, что создает ударную детонационную волну. Внешние признаки детонаций: металлический стук в цилиндре и клубы черного дыма в выхлопных газах. На детонационных режимах мощность двигателя падает, расход топлива увеличивается, износ двигателя ускоряется.
С химической точки зрения детонация вызывается большой скоростью образования перекисей и гидроперекисей последней части топлива в условиях высоких температур и давлений. Продукты расхода перекисей – свободные радикалы – при определенной концентрации реагируют со скоростью взрыва, что приводит к мгновенному самовоспламенению несгоревшей части горючей смеси. Процессы воспламенения и горения топлив подчиняются законам химической кинетики и цепной теории окисления, разработанным Бахом, Семеновым, Эмануэлем, Ивановым, Соколиком и др. Первой стадией гомогенного окисления углеводородов является образование перекисей типа:
RCH2–O–O–CH2–R
перекись диалкила
R–CH2–CH2–R'+O2 R–CH–CH2–R гидроперекись

O–O–H
При образовании соединений перекисного типа выделяется около 105кДж/моль теплоты.
Основные положения теории окисления:
При разрыве связи О=О (энергия разрыва связей 490,2 кДж/моль) образуется так называемый активный кислород, который энергично присоединяется к окисленному веществу "А", образуя соединения перекисного типа. Обладая высокой реакционной способностью, пероксиды взаимодействуют с другими веществами с образованием свободных радикалов:
АО2+А→А2О2;
Гидропероксиды
– нестойкие, высокореактивные вещества,
которые разлагаются либо с образованием
конечных продуктов типа альдегидов,
либо с образованием свободных радикалов
(
;
;
и т.д.). Эти радикалы дают начало новым
цепям превращений, и процесс развивается
лавинообразно.
Таким образом, свободные радикалы являются инициаторами новых цепей. Энергия активизации при взаимодействии свободных радикалов с валентно-насыщенными молекулами очень низка: 4–5, реже 40–80 кДж/моль.
Чем выше скорость образования перекисей, тем быстрее возникает взрывное детонационное сгорание топлива.
Известно, что углеводороды различного строения окисляются с различными скоростями, следовательно, детонационная стойкость углеводородов различна и определяется соотношением групп алканов, изоалканов, циклопентанов, циклогексанов и аренов.
За меру детонационной стойкости принято октановое число.
Октановым числом называется условная единица измерения детонационной стойкости, численно равная процентному содержанию (по объему) изооктана (2, 2, 4- триметилпентана) в его смеси с гептаном, эквивалентной по детонационной стойкости испытуемому топливу в стандартных условиях испытания. Октановое число эталонного изооктана принято считать за 100, гептана — за ноль.