- •1. Промежутки возрастания и убывания дифференцируемой функции. Экстремумы функции. Необходимое условие экстремума.
- •2. Достаточные условия существования максимума или минимума функции.
- •3. Наибольшие и наименьшие значения непрерывной функции на отрезке.
- •4. Исследование функции на выпуклость. Точки перегиба.
- •5. Асимптоты графика функции. Отыскание вертикальной и наклонной асимптот.
- •6. Общая схема исследования функции и построение ее графика.
- •7. Понятие о числовых рядах. Сходимость и сумма ряда. Необходимый признак сходимости.
- •8. Знакоположительные ряды. Достаточные признаки сходимости.
- •9. Свойства сходящихся рядов.
- •10. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимость ряда.
- •11. Понятие о функциональных рядах. Степенные ряды. Радиус сходимости степенного ряда.
- •12. Ряды Тейлора и Маклорена.
- •1 3. Понятие о ряде Фурье. Разложение в ряд Фурье четных и нечетных периодических функций.
- •14. Первообразная функции на промежутке. Неопределенный интеграл и его свойства.
- •15. Интегрирование по частям, замена переменных. Таблица интегралов основных элементарных функций.
- •17. Основные свойства определенного интеграла. Теорема о среднем.
- •18. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница для вычисления определенного интеграла. Замена переменных в определенном интеграле.
- •19. Несобственный интеграл с неограниченной областью интегрирования. Несобственный интеграл от функции, неограниченной на отрезке интегрирования. Понятие сходимости несобственных интегралов.
- •20. Понятие о дифференциальном уравнении и его решении. Порядок дифференциального уравнения. Понятие общего и частного решения.
- •21. Задача Коши для дифференциальных уравнений первого порядка. Теорема существования и единственности решения.
- •22. Линейные дифференциальные уравнения первого порядка. Метод разделения переменных.
- •23. Комплексные числа, алгебраическая и тригонометрическая форма записи. Формула Эйлера.
- •24. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами (однородные и неоднородные). Структура общего решения.
- •26. Непрерывность функции двух независимых переменных.
- •27. Частные производные и вектор градиента функции двух независимых переменных. Производная по направлению. Понятие о линиях уровня.
- •28. Полный дифференциал функции нескольких переменных. Дифференциал второго порядка функции нескольких переменных.
- •29. Частные производные и дифференциалы высших порядков.
- •30. Максимумы и минимумы функции нескольких (двух) переменных. Необходимые условия экстремума.
- •31. Наибольшее и наименьшее значения функции двух независимых переменных на замкнутом ограниченном множестве.
- •32. Достаточные условия максимума или минимума функции нескольких независимых переменных.
- •33. Предмет теории вероятностей. Виды случайных событий. Классическое определение вероятности события. Свойства вероятности.
- •34. Относительная частота события. Статистическое определение вероятности события.
- •35. Аксиоматическое определение вероятности.
- •36. Алгебра событий.
- •37. Теорема сложения вероятностей для совместных и несовместных событий.
- •38. Условная вероятность. Теорема умножения вероятностей для зависимых и независимых и событий.
- •40. Формула Бейеса (формула переоценки вероятностей гипотез).
- •41. Схема повторных независимых испытаний (схема Бернулли). Формула Бернулли.
- •42. Локальная и интегральная теоремы Лапласа.
- •43. Дискретные и непрерывные случайные величины, их законы распределения.
- •44. Числовые характеристики дискретных случайных величин.
- •46. Плотность распределения вероятностей непрерывной случайной величины, ее свойства.
- •47. Числовые характеристики непрерывных случайных величин.
17. Основные свойства определенного интеграла. Теорема о среднем.
Основные свойства определенного интеграла. Условимся, что a < b.
1.Для функции y = f(x), определенной при x = a, справедливо равенство .
То есть, значение определенного интеграла с совпадающими пределами интегрирования равно нулю. Это свойство является следствием определения интеграла Римана, так как в этом случае каждая интегральная сумма для любого разбиения промежутка [a; a] и любого выбора точек равна нулю, так как xi-xi-1=0,i=1,2,…,n, следовательно, пределом интегральных сумм является ноль.
2. Для интегрируемой на отрезке [a; b] функции выполняется
18. Определенный интеграл как функция верхнего предела. Формула Ньютона-Лейбница для вычисления определенного интеграла. Замена переменных в определенном интеграле.
Интеграл, как функция верхнего предела. До сих пор рассматривали свойства определенного интеграла, считая пределы интегрирования постоянными. Теперь же рассмотрим вопрос о том, как влияет изменение этих пределов на величину интеграла. Пусть f(x) - непрерывная функция, заданная на промежутке [a, b]. Тогда она будет непрерывной и на всяком частичном промежутке [a, x], и можем рассмотреть интеграл
являющийся функцией аргумента x (как указывалось в конце предыдущего пункта, обозначение переменной интегрирования не существенно. Чтобы не путать эту переменную с пределом интегрирования, обозначаем ее через t).
Формула Ньютона-Лейбница. Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Если F (x) - первообразная функции f (x) на [a, b], то
Замена переменных в определенном интеграле.ТЕОРЕМА. Пусть функция φ(t) имеет непрерывную производную на отрезке [α,β], а=φ(α), в=φ(β) и функция f(х) непрерывна в каждой точке х вида х=φ(t), где t€[α,β]. Тогда справедливо следующее равенство: Эта формула носит название формулы замены переменной в определенном интеграле. Подобно тому, как это было в случае неопределенного интеграла, использование замены переменной позволяет упростить интеграл, приблизив его к табличному (табличным). При этом в отличие от неопределенного интеграла в данном случае нет необходимости возвращаться к исходной переменной интегрирования. Достаточно лишь найти пределы интегрирования α и β по новой переменной t как решение относительно переменной t уравнений φ(t)=а и φ(t)=в. На практике, выполняя замену переменной, часто начинают с того, что указывают выражение t=ψ(х) новой переменной через старую. В этом случае нахождение пределов интегрирования по переменной t упрощается: α=ψ(а), β=ψ(в).
19. Несобственный интеграл с неограниченной областью интегрирования. Несобственный интеграл от функции, неограниченной на отрезке интегрирования. Понятие сходимости несобственных интегралов.
Несобственные интегралы с бесконечными пределами интегрирования. Пусть функция y = f(x) определена и интегрируема на произвольном отрезке [а, t], т.е. функция определена для произвольного значения t ≥ a. Несобственным интегралом (интегралом первого рода) от функции f(x) на полуинтервале [а, +∞) называется предел Если предел, стоящий в правой части равенства (9.1), существует и конечен, то несобственный интеграл называется сходящимся (к данному пределу), в противном случае — расходящимся.Выделяют следующие две задачи:
а) исследование вопроса о сходимости заданного несобственного интеграла;
б) вычисление значения интеграла в случае, если несобственный интеграл сходится.
В некоторых случаях решения этих двух задач удается объединить.
По аналогии с последней формулой определяется несобственный интеграл на полуинтервале (-∞, b]:
Несобственный интеграл на интервале (-∞ , +∞) определяется следующим образом :
Интеграл называется сходящимся, если существует конечный предел справа как предел функции двух переменных. Если предела нет, то несобственный интеграл называется расходящимся.
Понятие сходимости несобственных интегралов. Критерий Коши. 1. Пусть f(x) определена на множестве от[a;+бесконечности) и . Тогда сходится 2. Пусть f(x) определена на и . Тогда сходится