
- •1. Средства перехвата аудиоинформации.
- •1.1. Общие сведения о закладных устройствах.
- •1.2. Радиозакладки.
- •Схемы применения радиозакладных устройств
- •1.3. Приемники излучения радиозакладных устройств.
- •1.4. Закладные устройства с передачей информации по проводным каналам.
- •Передача информации от зу по сети 220в.
- •Многоканальные системы прослушивания.
- •2. Прямой аю'стичесжий канал.
- •21. Микрофоны.
- •2.2. Направленные микрофоны.
- •2.3. Комбинированные микрофоны.
- •2.4. Групповые микрофоны.
- •Трубчатый щелевой приемник.
- •2.5. Направленные микрофоны с параболическим рефлектором.
- •2.6. Особенности применения направленных микрофонов.
- •2.7. Перспективы развития направленных микрофонов.
- •3. Диктофоны.
- •3.1. Факторы, влияющие на качество звукозаписи.
- •3.2. Выбор типа микрофона и места его установки.
- •3.3. Средства обеспечения скрытности оперативной звукозаписи.
- •3.4. Цифровые диктофоны.
- •3.5. Обнаружители диктофонов.
- •3.6. Устройства подавления записи работающих диктофонов.
- •4. Методы и устройства высокочастотного навязывания и средства защиты.
- •4.1. Общая характеристика высокочастотного навязывания.
- •Высокочастотное зондирование.
- •Классификация методов высокочастотного навязывания.
- •4.2. Устройства для перехвата речевой информации в проводных каналах.
- •4.3. Перехват речевой информации с использованием радиоканала.
- •Оптико-акустическая аппаратура перехвата речевой информации.
- •4.5. Защита информации от высокочастотною навязывания.
- •Защита информации в оптическом диапазоне.
- •5. Оптические средства добывания конфиденциальной информации.
- •5.1. Оптико-механические приборы.
- •5.2. Приборы ночного видения.
- •Технические характеристики приборов ночного видения.
- •5.3, Средства для проведения скрытой фотосъемки.
- •5.4. Технические средства получения видеоинформации.
- •6. Технические каналы утечки информации.
- •6.1. Нежелательные излучения радиопередающих устройств систем связи и передачи информации.
- •6.2. Нежелательные излучения технических средств обработки информации
- •6.3. Нежелательные электромагнитные связи.
- •6.4. Излучатели электромагнитных полей.
- •6.5. Утечка информации по цепям заземления.
- •Перехват электромагнитного ноля опасного сигнала в грунте вокруг заземлителя.
- •6.6. Утечка информации по цепям питания.
- •6.7. Виброакустический канал.
- •6.8. Электроакустический канал
- •6.9. Утечка информации в волоконно-оптических линиях связи.
- •7. Перехват информации в линиях связи.
- •7.1. Зоны подключения.
- •7.2. Перехват телефонных переговоров в зонах «а», «б», «в».
- •Подключение бесконтактным методом.
- •7.3. Телефонные радиозакладки.
- •Маскировка радиозакладок в зоне а.
- •Специально разработанные приемники.
- •7.4. Перехват побочных электромагнитных сигналов и наводок.
- •7.5. Перехват телефонных переговоров в зоне «г».
- •6.6. Перехват телефонных переговоров в зоне «д».
Оптико-акустическая аппаратура перехвата речевой информации.
Наиболее перспективным направлением в области ВЧ-навязывания является использование лазерных микрофонов, первые образцы которых были приняты на вооружение американскими спецслужбами еще в 60-е годы. Принцип работы этих устройств, получивших название лазерные системы акустической разведки (JICAP), заключается в следующем. Генерируемое лазерным передатчиком излучение (ВЧ-сигнал) распространяется через атмосферу, отражается от поверхности оконного стекла, модулируется при этом по закону акустического сигнала, также воздействующего на стекло, повторно преодолевает атмосферу и принимается фотоприемником (Г1РМ), восстанавливающим разведываемый сигнал (см. рис. 88).
Сама модуляция зондирующего сигнала на нелинейном элементе, в качестве которого выступает оконное стекло, достаточно сложный физический процесс, который упрощенно может быть представлен в следующем виде:
Звуковая волна, генерируемая источником акустического сигнала, падая на границу раздела воздух-стекло, вызывает отклонения поверхности стекла от исходного положения. Отклонения приводят к дифракции света, отражающегося от этой границы.
Действительно, это заметно, например, при падении плоской монохроматической звуковой волны на плоскую границу раздела. Отклонения границы от стационарного состояния представляют собой бегущую вдоль стекла «поверхностную» волну с амплитудой, пропорциональной амплитуде смещений среды в поле звуковой волны, а длина А.-,- этой «поверхностной» волны равна
(4.1)
где θ 3 - угол падения, а λ-длина падающей акустической волны.
2. Отраженный от возмущенной поверхности свет содержит сдвинутые по частоте дифракционные компоненты. Если поперечный размер падающего пучка лазерного излучения значительно превышают длину «поверхностной» волны, то отраженный свет представляет собой совокупность дифрагирующих пучков, распространяющихся по дискретным направлениям, определяемым из равенства
(42)
где θ О- угол падения исходного светового пучка, кс =2 π / λс - волновое число, λс - длина световой волны.
В результате в отраженных пучках присутствуют три вида модуляции оптического излучения.
Во-первых, частотная модуляция, вызванная эффектом Доплера, вследствие колебательных движений оконного стекла под воздействием акустических сигналов.
При этом девиация частоты относительно центрального значения монохроматического излучения лазера подсветки имеет величину
(4.3)
где - скорость распространения «поверхностной» волны, Сз - скорость звука в среде.
Во-вторых, фазовая модуляция, вызванная наличием в отраженном сигнале как зеркально-отраженного, так и дифракционных компонентов.
Результат суперпозиции последних приводит к тому, что если поперечные размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в отраженном сигнале будет доминировать
дифракционный пучок нулевого порядка. В этом случае и окажется, что фаза световой волны будет промодулирована во времени с частотой звукового сигнала.
В-третьих, амплитудная модуляция, вызванная колебаниями подсвечивающего пучка относительно направления зеркального (максимального) отражения.
Эти колебания вызваны также пространственным перемещением оконного стекла под воздействием акустического сигнала.
На практике наиболее часто используют системы, работающие на восприятии именно этого вида модуляции.
Для того чтобы работать с лазерными системами акустической разведки, требуется большой опыт. В частности, необходимо правильно выбрать точку съема, грамотно расположить аппаратуру на местности, провести тщательную юстировку. Для обработки перехваченных сообщений необходимо в большинстве случаев использование профессиональной аппаратуры обработки речевых сигналов на базе компьютера. Однако пока подобная техника не для любителей. В нашу страну несколько раз ввозились лазерные системы, но большинство из них так и не были проданы из- за высокой стоимости (от 10 до 130 тысяч $) и неподготовленности потенциальных пользователей, которые, кроме крика ворон, ничего не могли услышать.
Однако из печати известно, что лазерные микрофоны широко использовались против сотрудников советского (российского) посольства и
консульств в США, подслушивались разговоры даже в семьях их сотрудников по месту жительства. Поэтому можно полагать, что так как опытные специалисты в состоянии скрытно применять подобные устройства, то весьма вероятно привлечение лазерных систем для решения задач конкурентной борьбы уже в ближайшем будущем.
На сегодняшний день создано целое семейство лазерных средств акустической разведки. Достижения в развитии лазерной техники позволили значительно улучшить технические характеристики и надежность работы данных систем разведки. Достаточно сказать, что появилась возможность дистанционной регистрации колебаний стекла с амплитудой вплоть до 10-14- 10-1бм, имеются сообщения о потенциальной возможности работы по объектам на расстояниях до 10 км, а наработка на отказ серийного гелий-неоновою лазера составляет не менее 10 000 часов.
Примером современных ЛCAP могут служить устройства НРO150 фирмы «Хыолет Паккард» и SIPE LASER 3-DA SUPER.
НР0150 - лазерная система, обеспечивающая эффективное обнаружение, подслушивание и регистрацию разговоров, ведущихся в помещениях. Дальность его действия - 1000 м. Устройство использует излучение гелий-неонового или полупроводникового лазера с длиной волны 0,63 мкм (что, кстати, является большим недостатком, так как пятно видно глазом, более современные системы работают в ближнем ПК-диапазоне). Прослушивание и перехват разговоров ведутся, благодаря приему переотраженного сигнала от обычного оконного стекла, представляющего собой своеобразную мембрану, колеблющуюся со звуковой частотой и создающую фонограмму происходящего разговора. Приемник и передатчик выполнены раздельно. Кассетное устройство магнитной записи и специальный блок компенсации помех, а также треноги поставляются в комплекте устройства. Вся аппаратура размещена в небольшом чемодане. Электропитание - от батареи.
SIPE LASER 3-DA SUPER - данная модель состоит из источника излучения (гелий -неонового лазера), приемника этого излучения с блоком фильтрации шумов, двух пар головных телефонов, аккумулятора питания и штатива. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. Используется оптическая насадка, позволяющая изменять угол расходимости выходящего пучка, и система автоматического регулирования, задающая высокую стабильность параметров. Система обеспечивает съем речевой информации с хорошим качеством с оконных рам с двойными стеклами на расстоянии до 250 м.
На рис. 89 показан внешний вид переносной ЛСАР РК ELECTRONIC.
На качество работы лазерных микрофонов существенно влияет большое количество различных факторов: погодные условия, уровни фоновых шумов, толщина и марка стекла, жесткость крепления стекла в раме, способ крепления рамы к стене, длина волны передатчика, точность юстировки аппаратуры, обработки сигнала, длина волны, уровень речи в помещении и т. д.
В связи с этим сложно говорить о дальности перехвата информации вообще, можно рассчитать дальность съема информации из данного помещения данной аппаратурой в данных условиях. Кстати, немецкие специалисты даже в рекламных проспектах отмечают, что дальность действия лазерной аппаратуры от единиц до сотен метров.
Дальнейшее развитие лазерных систем, вероятнее всего, пойдет по пути уменьшения массогабаритных характеристик устройств за счет использования современных полупроводниковых лазеров, оптических устройств и средств первичной обработки сигналов с использованием ЭВМ.
В целом, о возможности применения вышеизложенных методов в интересах промышленного шпионажа можно сделать следующие выводы:
Аппаратура, использующая принцип ВЧ-навязывания, реальное средство несанкционированного получения речевой информации.
Эффективность применения JTCАР зависит от следующих факторов: уровня речи; расстояния от пункта контроля до объекта; технических характеристик аппаратуры и средств вторичной обработки перехваченных сигналов; погодных условий; степени подготовки лиц, использующих технические средства разведки.
Применение подобной техники возможно только при тщательной предварительной подготовке.
Использование аппаратуры ВЧ-навязывания в проводных каналах имеет хорошую перспективу из-за сравнительной простоты и дешевизны, известных методов. \
Использование лазерных систем в техническом плане не имеет серьезных проблем, и в обозримом будущем они станут обычным средством несанкционированного получения речевой информации не только спецслужб.