
- •Определение линейного пространства. Примеры линейных пространств. Некоторые свойства их свойства.
- •Линейная зависимость и независимость элементов линейного пространства. Свойства.
- •Базис линейного пространства. Единственность разложения элемента линейного пространства по базису. Линейные операции над элементами, заданными в координатах.
- •Размерность линейного пространства. Две теоремы о связи размерности линейного пространства и базиса.
- •Изоморфизм линейного пространства. Теорема об изоморфизме линейных пространств одинаковой размерности.
- •Подпространство линейного пространства. Примеры. Линейная оболочка. Примеры. Размерность подпространства. Теорема о размерности линейной оболочки.
- •Сумма и пересечение подпространств. Теорема о сумме размерностей произвольных подпространств.
- •Разложение линейного пространства в прямую сумму подпространств. Определение и теорема.
- •Прямое и обратное преобразование базисов. Доказательство непрерывности матрицы перехода от одного базиса к другому. Преобразование координат при преобразовании базиса.
- •Вещественное евклидово пространство, примеры. Неравенство Коши-Буняковского.
- •Нормированное линейное пространство. Норма в евклидовом пространстве. Угол между элементами линейного пространства. Ортогональные элементы. Теорема Пифагора.
- •Ортонормированный базис в евклидовом пространстве. Теорема о существовании ортонормированного базиса. Процесс ортогонализации.
- •Скалярное произведение в ортонормированном базисе. Смысл координат произвольного элемента в этом базисе.
- •Разложение евклидова пространства на прямую сумму подпространства и его ортогонального дополнения.
- •Теорема об изоморфизме евклидовых пространств.
- •Комплексное евклидово пространство. Следствия из аксиом. Неравенство Коши-Буняковского. Норма. Скалярное произведение.
- •Определение линейного оператора . Действие над линейными операторами. Пространство линейных операторов. Нулевой, противоположный и тождественный операторы.
- •Свойства множества линейных операторов l(V,V). Обратный оператор.
- •Матрица линейного оператора. Теорема о соответствии каждой квадратной матрице линейного оператора.
- •Преобразование матрицы линейного оператора при переходе к новому базису.
Ортонормированный базис в евклидовом пространстве. Теорема о существовании ортонормированного базиса. Процесс ортогонализации.
О
пределение.
Будем говорить, что n
элементов e1, e2,…,
en
n-мерного евклидова
пространства Е образуют ортонормированный
базис этого пространства, если эти
элементы попарно ортогональны и норма
каждого из этих элементов равна 1, то
есть если
1, при i=k
(ei,ek)=
0, при i≠k
Для конкретности докажем, что такая система линейно независима. α1e1+…+αnen=0, умножим скалярно это равенство на ek (k от 1 до n). Мы получим αk=0 => e1, e2,…, en линейно независимы.
Теорема. Во всяком n-мерном евклидовом пространстве E существует ортонормированный базис.
Доказательство.
С огласно определению размерности в пространстве E найдется n линейно независимых элементов f1, f2,…, fn. Докажем, что можно построить n элементов e1, e2,…, en, линейно выражающихся через f1, f2,…, fn и образующих ортонормированный базис (то есть удовлетворяющих соотношениям
1, при i=k
(ei,ek)=
0, при i≠k
Проведем доказательство возможности построения таких элементов e1, e2,…, en методом математической индукции.
Если имеется только один элемент f1, то для построения элемента e1 с нормой, равной единице, достаточно нормировать f1, то есть умножить этот элемент на число [(f1,f1)1/2]-1, обратное его норме. Мы получим при этом элемент e1=[(f1,f1)1/2]-1f1 с нормой, равной единице.
Считая, что m – целое число, меньше n, предположим, что нам удалось построить m элементов e1, e2,…, em, линейно выражающихся через f1, f2,…, fm попарно ортогональных и имеющих нормы, равные единице. Докажем, что к этим элементам e1, e2,…, em можно присоединить еще один элемент em+1, линейно выражающийся через f1, f2,…, fm+1, ортогональный к каждому из элементов e1, e2,…, em и имеющий норму, равную единице.
Убедимся в том, что этот элемент em+1 имеет вид em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1], где αm+1 – некоторое вещественное число.
В самом деле, элемент em+1 линейно выражается через f1, f2,…, fm+1 (в силу того, что он линейно выражается через e1, e2,…, em, fm+1, а каждый из элементов e1, e2,…, em линейно выражается через f1, f2,…, fm). Отсюда сразу следует, что при αm+1≠0 элемент em+1 заведомо не является нулевым (ибо в противном случае являлась бы нулевым элементом некоторая линейная комбинация линейно независимых элементов f1, f2,…, fm+1, в которой в силу em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] отличен от нуля коэффициент при fm+1).
Далее из того, что элементы e1, e2,…, em попарно ортогональны и имеют нормы, равные единицы, и из соотношения em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] сразу же вытекает, что скалярное произведение (em+1,ek) равно нулю для любого номера k равного 1, 2,…, m.
Для завершения индукции остается доказать, что число αm+1 можно выбрать так, что норма элемента em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] будет равна единице. Выше уже установлено, что при αm+1≠0 элемент em+1, а, стало быть, и элемент, заключенный в em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] em+1=αm+1[fm+1-(fm+1,em)em-(fm+1,em-1)em-1-…-(fm+1,e1)e1] в квадратные скобки, не является нулевым. Стало быть, для того чтобы нормировать элемент, заключенный в квадратные скобки, следует взять число αm+1 обратным положительной норме этого заключенного в квадратные скобки элемента. При этом норма em+1 будет равна единице. Теорема доказана.
Определение. Процесс ортогонализации – алгоритм построения по данной системе n линейно независимых элементов f1, f2,…, fn системы n попарно ортогональных элементов e1, e2,…, en, норма каждого из которых равна единице.
e1=f1/[(f1,f1)]1/2;
e2=g2/[(g2,g2)]1/2, где g2=f2-(f2,e1)e1;
e3=g3/[(g3,g3)]1/2, где g3=f3-(f3,e2)e2-(f3,e1)e1;
en=gn/[(gn,gn)]1/2, где gn=fn-(fn,en-1)en-1-…-(fn,e1)e1.