
- •1. Определение электронных приборов. Классификация электронных приборов по характеру рабочей среды, мощности, частотному диапазону.
- •2. Свойства полупроводников. Основные материалы полупроводниковой электроники, и их основные электрофизические параметры.
- •3. Элементы зонной теории полупроводников. Генерация и рекомбинация носителей.
- •4. Собственные и примесные полупроводники. Концентрация носителей в примесных полупроводниках.
- •5. Дрейфовое движение, подвижность носителей и ее зависимость от температуры и концентрации примесей.
- •6.Дрейфовый и диффузионный токи.
- •7. Зависимость плотности дрейфового тока и ее зависимость от температуры и концентрации примесей.
- •8. Тип электронно-дырочных переходов и контактов.
- •9. Образование p-n-перехода. Диффузионная длина электронов и дырок.
- •10. Процессы в p-n-переходе при отсутствии внешнего электрического поля. Контактная разность потенциалов.
- •11. Симметричный и несимметричный p-n-переходы.
- •12. Распределение электронов и дырок в p-n-переходе. Определение напряженности и толщины p-n-перехода при отсутствии внешнего напряжения.
- •13. Работа p-n-перехода при подаче внешнего прямого напряжения. Явление инжекции.
- •15. Уравнение вольт-амперной характеристики. Отличие реальной характеристики от теоретической.
- •16.Пробой p-n-перехода. Виды пробоя.
- •17. Емкости в p-n-переходе.
- •1 8. Устройство полупроводниковых диодов. Классификация диодов по частоте, мощности, по назначению.
- •19. Основные параметры диодов и определение их по статическим характеристикам. Схема замещения диода.
- •21.Принцип работы и схема включения стабилитрона. Основные параметры стабилитрона.
- •22. Варикапы. Принцип действия. Основные параметры варикапов. Схема замещения варикапа на нч, на вч.
- •23. Импульсные диоды. Основные параметры, характеризующие работу в импульсном режиме.
- •24. Принцип действия, характеристики и параметры тд. Расчет основных параметров тд.
- •25. Устройство биполярных транзисторов. Определение режимов работы транзистора.
- •26. Схемы включения транзисторов: сОб, оэ, ок. Связь между коэффициентами передачи тока в различных схемах включения.
- •27. Токи в транзисторе в активном режиме.
- •28. Статические характеристики бт в схеме с об.
- •29. Особенности работы схемы с оэ.
- •30. Системы параметров транзисторов. Y-параметры, формальная схема замещения.
- •38. Построение нагрузочных характеристик и кривой допустимой мощности. Выбор области безопасного режима.
- •39. Особенности работы транзисторов на вч.
- •40. Устройство и принцип действия полевых транзисторов. Классификация полевых транзисторов.
- •41. Расчет напряжения отсечки и напряжения насыщения в пт.
- •42. Схемы включения пт: ои, ос, оз.
- •43. Статические характеристики пт с управляющем p-n-переходом.
- •44. Статические параметры пт и расчет их по характеристикам.
- •45. Расчет коэффициента усиления и выходной мощности пт в рабочем режиме.
- •4 6. Эквивалентная схема пт.
- •48. Электронно-лучевые приборы. Устройство электронно-лучевых трубок. Системы фокусировки и отклонения.
- •49.Устройство и принцип действия электростатической системы и магнитной фокусировки.
- •50.Отклоняющие системы элт. Чувствительность трубок с электростатической и магнитной отклоняющими системами.
- •51. Экраны элт. Основные параметры экранов, типы экранов. Обозначения элт.
- •52. Типы элт: осциллографические, индикаторные, кинескопы и их особенности.
- •53. Газоразрядные индикаторы. Принцип работы газоразрядных индикаторных панелей (гип).
- •54. Жидкокристаллические индикаторы. Устройство жки.
- •55. Полупроводниковые индикаторы. Устройство и принцип действия.
- •56. Фотоэлектрические приборы. Типы фотоэлектрических приборов: основные характеристики и параметры. Области применения.
- •57. Оптоэлектронные приборы. Классификация и типы.
- •58. Оптроны, устройство и принцип действия. Типы оптронов.
- •59.Шумы полупроводниковых приборов. Сравнительная оценка шумовых свойств бт пт.
- •60. Устройство и принцип действия электровакуумных приборов. Типы электронных ламп и области их применения.
55. Полупроводниковые индикаторы. Устройство и принцип действия.
Полупроводниковые индикаторы основаны на явлении люминесценции, обусловленной рекомбинацией электронов и дырок при их инжекции под действием прямого напряжения на р-n-переходе. Спектр видимого излучения ППИ (светодиодов) лежит в диапазоне волн 0,4-0,7 мкм. Эффективность преобразования электрической энергии в излучение определяется материалом полупроводника, коэффициентом полезного действия инжекции неосновных носителей, оптическими потерями в полупроводнике и другими факторами.
ППИ характеризуются рядом преимуществ по сравнению с другими типами индикаторов:
- большой срок службы;
- совместимость с интегральными схемами, благодаря низким потребляемым напряжениям и токам;
- высокая надежность при ударных и вибрационных перегрузках;
- компактность;
- малая инерционность ППИ обеспечивает высокое быстродействие (50-200 нс).
В настоящее время выпускаемые промышленностью ППИ в основном изготавливаются на основе твердых растворов фосфида и арсенида галлия GaAsP и фосфида галлия GaP. Возможно получение широкого диапазона излучения ППИ от красного до голубого цвета.
Конструкции полупроводниковых индикаторов.
1. Монолитная. Сегменты с типичным размером 2х3 мм создаются методами фотолитографии на полупроводниковом кристалле.
2. Гибридная. Каждый сегмент - отдельный излучающий кристалл на кера-
мическомосновании.
Размеры светящихся областей относительно малы, что является одним из не-достатков полупроводниковых индикаторов. Но высокая яркость светодиодов позволяет использовать различные способы увеличения изображения.
1. В многоразрядных монолитно-гибридных индикаторах используется пла-
стмассовая моноблочная линза.
2. Кристаллы помещают в основание конических расширяющихся прорезей в пластмассовом корпусе.
Структура индикатора со светорассеивающим материалом:
Яркость лицевой поверхности светодиода намного меньше яркости кристал- ла. Но при относительно малых размерах светящихся элементов индикатора для зрительного восприятия важна не яркость, а сила света - основной фотометрический параметр светодиодов
56. Фотоэлектрические приборы. Типы фотоэлектрических приборов: основные характеристики и параметры. Области применения.
Это приборы, в кот.энергия оптического излучения преобраз. в электрическую. Действие основано на явлении фотоэлектрического эффекта, кот.наз. процесс полного или частичного освобождения заряженных частиц в в-ве в рез-те поглощ. фотонов.
Внутренним фотоэффектом наз. перераспред. электронов по энергетическим состояниям в твердых телах и жидкостях в рез. поглощ. фотонов, кот. сопровождается образ. дополнит. носителей зарядов или возникн. внутренней фото – эдс(возникает в пп на p- n- переход под действием оптического излучения). Явления возникн. эдс в p-n переходе или тока при вкл фотоэлектрического прибора в эл. цепь, происх. в рез-те разделения эл. зарядов эл. полем, обусловленным неоднородностью пп и воздействием оптического излучения, наз. фотогальваническим эффектом.
Фотоэлектрические приборы делят по виду рабочей среды(электровакуумные и полупроводниковые), типу фотоэлектрического эффекта(с внешним (электровакуумные фотоэлементы, фотоэлектронные умножители) и внутреннем (фоторезисторы, фотодиоды, фототранзисторы, полупроводниковые фотоэлементы) , функциональному назначению(фотоприёмники, фотодатчики и фотоэлектрические преобразователи энергии оптического излучения в электрическую) и др. Фотоприёмники преобраз. световой сигнал в эл. и применяются, в аппаратуре факсимильной связи, устройствах считывания информации в вычислительной технике, киноаппаратуре. К особой группе фотоприёмников относят телевизионные передающие трубки. Фотодатчики предназначены для преобразования измеряемой величины в электрический сигнал.
Фотоприборы – это приборы, предназн. для преобраз. энергии электромагнитного излучения в электрическую.
фотоприёмники ( фоторезисторы (полупроводниковый фотоэлектрический прибор с внутренним фотоэффектом, в кот.используется явление фотопроводимости, т.е. изменение электрической проводимости ПП под действием оптического излучения); фотодиоды (ПП фотоэлектрический прибор, в кот. используется внутренний фотоэффект. Устройство фотодиода аналогично устройству обычного плоскостного диода. Отличие сост. в том, что его р-n-переход одной стороной обращен к стеклянному окну в корпусе, через которое поступает свет, и защищен от воздействия света с другой стороны); фототранзисторы (ПП управляемый оптическим излучением прибор с двумя взаимодействующими р-n-переходами. Фототранзисторы, как и обычные транзисторы, могут иметь p-n-p-и n-p-n-структуру. фототранзистор выполнен так, что световой поток облучает область базы. Вх. сигналом фототранзистора явл. модулированный световой поток, а вых. – изменение напряжения на резисторе нагрузки в коллекторной цепи); фототиристоры (оптоэлектронный прибор, имеющий структуру, схожую со структурой обычного тиристора и отличается от последнего тем, что включается не напряжением, а светом, освещающим затвор. Этот прибор применяется в управляемых светом выпрямителях и наиболее эффективен в управлении сильными токами при высоких напряжениях.