
- •1. Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.
- •4. Зависимость сопротивления проводника от температуры. Температурный коэффициент сопротивления. Сверхпроводимость.
- •6. Работа и мощность электрического тока. Закон Джоуля - Ленца. Короткое замыкание электрической цепи.
- •7. Основные положения электронной теории проводимости металлов (работа выхода, потенциальная яма, термоэлектронная эмиссия).
- •9. Природа электрического тока в электролитах (электролитическая диссоциация. Электролиз. Законы электролиза, применение электролиза).
- •18. Действие магнитного поля на движущийся заряд (сила Лоренца. Применение силы Лоренца).
- •19. Магнитное поле в веществе, виды магнетиков, магнитный гистерезис.
- •20. Электромагнитная индукция. Опыты Фарадея. Направление индукционного тока. Правило Ленца.
- •21. Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.
- •22. Вихревое электрическое поле. Индукционные тока в массивных проводниках (токи Фуко).
- •23. Явление самоиндукции. Индуктивность и её зависимость. Энергия магнитного поля тока.
- •26. Механические волны (волновой процесс, виды волн, длина волны, свойства механической волны).
- •27. Звуковые волны и их характеристики.
- •28. Электромагнитные колебания (свободные и вынужденные колебания, работа колебательного контура, аналогия между механическими и электромагнитными колебаниями)
- •29. Переменный электрический ток (условия возникновения вынужденных электромагнитных колебаний, виток в однородном магнитном поле, гармонический характер колебания).
- •30. Действующее значение силы тока и напряжения. Мощность переменного тока. Активное сопротивление цепи переменного тока.
- •31. Цепи переменного тока и их особенности. Закон Ома для полной цепи переменного тока.
- •32. Автоколебательные системы. Ток высокой частоты и его особенности.
- •33. Производство электрической энергии. Генератор.
- •34. Трёхфазный ток. Типы соединений (Устройство и принцип работы).
- •36. Трансформатор. Устройство трансформатора и принцип работы. Режимы работы трансформатора.
- •37. Электромагнитная волна и её свойства. Опыт Герца. Открытый колебательный контур.
- •38. Изобретение радио а.С. Поповым. Свойства электромагнитных волн.
- •39. Принципы радиосвязи. Модуляция и детектирование.
- •40. Развитие средств связи. Радиолокация.
- •41. Развитие взглядов на природу света. Оптика. Разделы оптики. Источники света. Световой дуализм.
- •43. Основы фотометрии и её законы.
- •3. Закон преломления света.
- •45. Явление интерференции света. Цвета тонких плёнок. Проблема когерентности. Волновой цуг.
- •46. Применение интерференции света (кольца Ньютона. Проверка качества обработки поверхностей. Просветление оптики и др.).
- •47. Явление дифракции света. Принцип Гюйгенса - Френеля. Явления, наблюдаемые при пропускании света через отверстия малых размеров.
- •48. Дифракционная решетка. Границы применимости геометрической оптики.
- •49. Явление дисперсии света. Классическая электронная теория дисперсии света.
- •50. Поляризация света. Двойное лучепреломление. Поляризатор и анализатор. Дихромизм. Оптическая активность.
- •51. Голография и её применение.
- •52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).
- •53. Спектр (распределение энергии в спектре, спектроскоп, спектры испускания и поглощения, спектральный анализ и его применение).
- •54. Невидимые излучения. Рентгеновское излучение и его применение.
- •55. Шкала электромагнитных волн.
- •56. Элементы теории относительности. Связь между массой и энергией.
- •57. Основные понятия волновой оптики (эффект Доплера, эффект Вавилова - Черенкова).
- •58. Квантовая оптика. Абсолютно чёрное тело. Закон Стефана - Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.
- •59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.
- •60. Внутренний фотоэффект. Фотоэлементы. Фотосопротивление. Вентильные фотоэлементы. Солнечные батареи.
- •61. Химическое действие света. Световое давление. Опыт Лебедева. Квантовая теория светового давления.
- •62. Строение атомного ядра. Опыты Резерфорда. Неустойчивость атомного ядра. Квантовые постулаты Бора.
- •63. Оптический квантовый генератор. Принцип работы и применение. Спонтанное и индуцированное излучение.
- •65. Открытие радиоактивности. Естественная радиоактивность. Виды радиоактивного излучения.
- •66. Радиоактивные превращения. Правила смещения. Период полураспада. Изотопы.
- •67. Открытие нейтрона. Открытие протона. Протонно - нейтронная модель ядра. Нуклоны.
- •68. Фундаментальные взаимодействия в природе. Ядерные силы. Энергия связи атомных ядер.
- •69. Свойства ионизирующих излучений.
- •70. Ядерные реакции и условия их протекания. Энергетический выход ядерных реакций. Механизм ядерных реакций. Ядерная реакция на нейтронах.
- •71. Деление ядер урана. Механизм деления ядра. Цепная ядерная реакция. Коэффициент размножения нейтронов.
- •72. Использование цепной ядерной реакции в мирных целях. Устройство и принцип действия ядерного реактора.
- •74. Три этапа развития физики элементарных частиц.
- •75. Общие сведения об элементарных частицах. Классификация элементарных частиц. Кварки.
26. Механические волны (волновой процесс, виды волн, длина волны, свойства механической волны).
Волновой процесс- это процесс распространения колебаний в сплошной среде, т.е. Непрерывно распространённой в пространстве и обладающей упругими свойствами. Распространение колебаний в упругой среде называют волновым движением.
Причины возникновения волн:1) Существование сил взаимодействия между молекулами. 2)Инертность частиц среды 3)Вибратор(колеблющееся тело, создающее волновое движение в окружающей среде). Волны в которых происходит перемещение фазы с определённой скоростью, называют бегущими, но все точки среды в волне колеблются около своего положения равновесия и вместе с фазой не переремещаются. Распространение бегущих волн связанно с передачей энергии от одной колеблющейся точки к другой. Энергия, переносимая волной, прямо пропорциональна плотности среды, квадрату амплитуды колебаний и квадрату их частоты.
Виды волн. Поперечные волны(деформация сдвига- в твердых телах и на поверхности жидкости.). Продольные волны(деформация сжатия- в газообразных твёрдых и жидких телах). Поперечные- частицы в этих волнах колеблются в направлении, перпендикулярном распространению волны. Продольные- частицы в этих волнах колеблются вдоль направления распространения волны. Длина волны есть расстояние, на которое распространяются колебания в среде за время, равное одному периоду колебания.
27. Звуковые волны и их характеристики.
Происхождение звука: причины: вибрации; упругие свойства среды. Челов. ухо воспринимает звуки от 20(инфразвук) до 20 000 Гц (ультразвук).
Классификация звуков: 1) Звуковые удары возникают при выстреле, взрыве, электр. искре. 2) Шумы представляют собой последовательность непериодических ударов (шум ветра в листьях деревьев) 3) Музыкальные звуки вызываются периодическими колебаниями источников звуков (муз. Инструменты). Муз. Тоны, характеризуются высотой, громкостью и тембром. Чем меньше период и больше частота колебаний ,тем выше тон, и наоборот. Чем больше амплитуда колебаний, тем сильнее звук; чем меньше амплитуда, тем звук слабее. Сила звука изменятся обратно пропорционально квадрату расстояния от источника звука. Звуки одной и той же высоты, воспроизведенные на скрипке, кларнете, отличаются друг от друга тембром. За тембр отвечает частота колебания вибратора.
28. Электромагнитные колебания (свободные и вынужденные колебания, работа колебательного контура, аналогия между механическими и электромагнитными колебаниями)
Электромагнитные колебания это периодически или почти периодически изменения заряда, силы тока и напряжения.
Работа колебательного контура Разрядный ток нарастает постепенно . причиной этого явления служит возникновения в цепи ЭДС самоиндукции, которая препятствует любому изменению электрического тока в этой цепи. После того как ток в катушке достигает наибольшего значения и напряжения на обкладках конденсатора упадёт до нуля, ток, продолжая течь, начнёт перезаряжать конденсатор. Возникшее при этом электрическое поле, направленное против тока, начнёт уменьшать величину заряда. Уменьшение тока вызовет появление в катушке индуктивности ЭДС самоиндукции. Поддерживаемый ЭДС самоиндукции ток в катушке, постепенно ослабевая ,будет течь до тех пор, пока не закончится переразрядка конденсатора. Это приведет к тому, что ток будет равен 0, напряжение на конденсаторе достигнет максимума. С окончанием переразрядки конденсатора энергия магнитного поля катушки окажется превращённой в энергию электрического поля, причём направление напряжённости будет противоположно начальному. Далее конденсатор вновь разряжаясь, создаёт ток противоположного направления. Энергия электрического поля постепенно начнёт убывать, превращаясь в энергию магнитного поля, которая будет превращаться про повторной перезарядке конденсатора в энергию электрического поля . Т.о. в цепи состоящей из конденсатора и катушки индуктивности, будет переменный ток. Периодически повторяющиеся изменения силы тока в электрической цепи, сопровождающиеся периодическими превращениями энергии электрического поля(и наоборот), происходящие без потребления энергии от внешних источников, называется свободными электромагнитными колебаниями. Вынужденными электро - магнитными колебаниями называют периодические изменения силы тока и напряжения в эл. цепи, происходящие под действием переменной ЭДС от внешнего источника.