
- •1. Электрический ток. Действие электрического тока. Условия существования электрического тока. Основные характеристики электрического тока.
- •4. Зависимость сопротивления проводника от температуры. Температурный коэффициент сопротивления. Сверхпроводимость.
- •6. Работа и мощность электрического тока. Закон Джоуля - Ленца. Короткое замыкание электрической цепи.
- •7. Основные положения электронной теории проводимости металлов (работа выхода, потенциальная яма, термоэлектронная эмиссия).
- •9. Природа электрического тока в электролитах (электролитическая диссоциация. Электролиз. Законы электролиза, применение электролиза).
- •18. Действие магнитного поля на движущийся заряд (сила Лоренца. Применение силы Лоренца).
- •19. Магнитное поле в веществе, виды магнетиков, магнитный гистерезис.
- •20. Электромагнитная индукция. Опыты Фарадея. Направление индукционного тока. Правило Ленца.
- •21. Магнитный поток. Закон электромагнитной индукции. Правило правой руки для индукционного тока.
- •22. Вихревое электрическое поле. Индукционные тока в массивных проводниках (токи Фуко).
- •23. Явление самоиндукции. Индуктивность и её зависимость. Энергия магнитного поля тока.
- •26. Механические волны (волновой процесс, виды волн, длина волны, свойства механической волны).
- •27. Звуковые волны и их характеристики.
- •28. Электромагнитные колебания (свободные и вынужденные колебания, работа колебательного контура, аналогия между механическими и электромагнитными колебаниями)
- •29. Переменный электрический ток (условия возникновения вынужденных электромагнитных колебаний, виток в однородном магнитном поле, гармонический характер колебания).
- •30. Действующее значение силы тока и напряжения. Мощность переменного тока. Активное сопротивление цепи переменного тока.
- •31. Цепи переменного тока и их особенности. Закон Ома для полной цепи переменного тока.
- •32. Автоколебательные системы. Ток высокой частоты и его особенности.
- •33. Производство электрической энергии. Генератор.
- •34. Трёхфазный ток. Типы соединений (Устройство и принцип работы).
- •36. Трансформатор. Устройство трансформатора и принцип работы. Режимы работы трансформатора.
- •37. Электромагнитная волна и её свойства. Опыт Герца. Открытый колебательный контур.
- •38. Изобретение радио а.С. Поповым. Свойства электромагнитных волн.
- •39. Принципы радиосвязи. Модуляция и детектирование.
- •40. Развитие средств связи. Радиолокация.
- •41. Развитие взглядов на природу света. Оптика. Разделы оптики. Источники света. Световой дуализм.
- •43. Основы фотометрии и её законы.
- •3. Закон преломления света.
- •45. Явление интерференции света. Цвета тонких плёнок. Проблема когерентности. Волновой цуг.
- •46. Применение интерференции света (кольца Ньютона. Проверка качества обработки поверхностей. Просветление оптики и др.).
- •47. Явление дифракции света. Принцип Гюйгенса - Френеля. Явления, наблюдаемые при пропускании света через отверстия малых размеров.
- •48. Дифракционная решетка. Границы применимости геометрической оптики.
- •49. Явление дисперсии света. Классическая электронная теория дисперсии света.
- •50. Поляризация света. Двойное лучепреломление. Поляризатор и анализатор. Дихромизм. Оптическая активность.
- •51. Голография и её применение.
- •52. Виды излучения. Тепловое и люминесцентное излучение (основные характеристики с примерами).
- •53. Спектр (распределение энергии в спектре, спектроскоп, спектры испускания и поглощения, спектральный анализ и его применение).
- •54. Невидимые излучения. Рентгеновское излучение и его применение.
- •55. Шкала электромагнитных волн.
- •56. Элементы теории относительности. Связь между массой и энергией.
- •57. Основные понятия волновой оптики (эффект Доплера, эффект Вавилова - Черенкова).
- •58. Квантовая оптика. Абсолютно чёрное тело. Закон Стефана - Больцмана. Распределение энергии в спектре. Квантовая гипотеза Планка.
- •59. Фотоэффект. Законы фотоэффекта. Квантовая теория фотоэффекта. Фотон и его энергетические характеристики.
- •60. Внутренний фотоэффект. Фотоэлементы. Фотосопротивление. Вентильные фотоэлементы. Солнечные батареи.
- •61. Химическое действие света. Световое давление. Опыт Лебедева. Квантовая теория светового давления.
- •62. Строение атомного ядра. Опыты Резерфорда. Неустойчивость атомного ядра. Квантовые постулаты Бора.
- •63. Оптический квантовый генератор. Принцип работы и применение. Спонтанное и индуцированное излучение.
- •65. Открытие радиоактивности. Естественная радиоактивность. Виды радиоактивного излучения.
- •66. Радиоактивные превращения. Правила смещения. Период полураспада. Изотопы.
- •67. Открытие нейтрона. Открытие протона. Протонно - нейтронная модель ядра. Нуклоны.
- •68. Фундаментальные взаимодействия в природе. Ядерные силы. Энергия связи атомных ядер.
- •69. Свойства ионизирующих излучений.
- •70. Ядерные реакции и условия их протекания. Энергетический выход ядерных реакций. Механизм ядерных реакций. Ядерная реакция на нейтронах.
- •71. Деление ядер урана. Механизм деления ядра. Цепная ядерная реакция. Коэффициент размножения нейтронов.
- •72. Использование цепной ядерной реакции в мирных целях. Устройство и принцип действия ядерного реактора.
- •74. Три этапа развития физики элементарных частиц.
- •75. Общие сведения об элементарных частицах. Классификация элементарных частиц. Кварки.
67. Открытие нейтрона. Открытие протона. Протонно - нейтронная модель ядра. Нуклоны.
Открытие нейтрона. В начале 30-х гг. были обнаружены неизвестные ранее лучи. Они были названы бериллиевым излучением. так как возникали при бомбардировке альфа - частицами бериллия. В 1932 г английский учёный Джеймс Чедвик (ученик Резерфорда) с помощью опытов, проведённых в камере Вильсона, доказал, что бериллиевое излучение представляет собой поток электрически нейтральных частиц, масса которых приблизительно равна массе протона. Отсутствие у исследуемых частиц электрического заряда следовало, в частности, из того, что они не отклонялись ни в электрическом, ни в магнитном поле. А массу частиц удалось оценить по их взаимодействию с другими частицами. Эти частицы были названы нейтронами (ни тот, ни другой).
Открытие протона. В 1913 г. Э. Резерфорд выдвинул гипотезу о том, что одной из частиц, входящих в состав атомных ядер всех химических элементов, является ядро атома водорода.
Основание: массы атомов химических элементов превышают массу атома водорода в целое число раз (т.е. кратны ей).
В 1919 г. Резерфорд поставил опыт по исследованию взаимодействия альфа - частиц с ядрами атомов азота.
В этом опыте альфа - частица, летящая с огромной скоростью, при попадании в ядро атома азота выбивала из него какую- то частицу. По предположению Резерфорда, этой частицей было ядро атома водорода, которое Резерфорд назвал протоном (первый).
Нуклон. Так как протон и нейтрон по взаимодействию ядерными силами не отличаются друг от друга, их часто рассматривают как одну частицу нуклон в двух различных состояниях (ядро). Нуклон в состоянии без электрического заряда называется нейтроном, нуклон в состоянии с положительным электрическим зарядом называется протоном.
Одно из замечательных свойств ядерных сил — свойство насыщения — заключается в том, что нуклон оказывается способным к ядерному взаимодействию одновременно лишь с небольшим числом нуклонов-соседей. Свойство насыщения ядерных сил делает их в некоторой мере сходными с силами связи атомов в молекулах.
68. Фундаментальные взаимодействия в природе. Ядерные силы. Энергия связи атомных ядер.
Фундаментальными называются такие взаимодействия, которые не могут быть сведены к другим, более простым видам взаимодействия. Их в настоящее время известно четыре: ядерное, электромагнитное, слабое, гравитационное.
Ядерные силы. Между одноименно заряженными протонами в атомном ядре действуют электростатические силы отталкивания. В тяжелых ядрах, состоящих из нескольких десятков протонов, силы кулоновского отталкивания достигают нескольких тысяч ньютон.
Факт существования устойчивых атомных ядер свидетельствует о действии внутри атомных ядер могучих сил притяжения неизвестного ранее вида. Их называют ядерными силами.
Свойства ядерных сил: • На расстоянии 10 м от центра протона ядерные силы примерно в 35 раз больше кулоновских и в 1038 раз больше гравитационных.
• С увеличением расстояния ядерные силы очень быстро убывают
• Ядерные СИЛЫ не зависят от наличия или отсутствия электрического заряда у частицы.
Энергия связи. Ядра представляют собой устойчивые образования, хотя между протонами существует кулоновское отталкивание.
О
прочности того или иного образования
судят по тому, насколько легко или
трудно его разрушить: чем труднее его
разрушить, тем оно прочнее. Но разрушить
ядро значит разорвать связи между
нуклонами или, иными словами, совершить
работу против сил связи между ними. Из
закона сохранения энергии следует, что
при образовании ядра из составляющих
его нуклонов должна выделяться та же
энергия, которую необходимо затратить
при расщеплении ядра на составляющие
его частицы.
Измерение масс ядер
показывает, что масса
ядра меньше суммы масс составляющих
его нуклонов, т.е.
при образовании ядра из нуклонов
происходит уменьшение их массы, потеря
некоторой её части.
Разность
между суммой масс покоя свободных
протонов и нейтронов, из которых
образовано ядро, и массой ядра называется
дефектом массы ядра.