
- •Информационные процессы
- •1.1 Информатика и информатизация общества
- •1.2 Появление и развитие информатики
- •1.3 Цели, задачи и функции информатики
- •2. Разработке информационной техники и создание новейшей технологии по переработке информации.
- •1.4 Понятие информации, ее виды, свойства и особенности
- •По способу передачи и восприятия различают информацию:
- •1.5 Количество информации. Единицы измерения информации
- •Тема 2. Общая характеристика процессов сбора, передачи, обработки и накопления информации
- •2.1 Информация и информационные процессы
- •2.2 Сбор информации
- •1. Первичный сигнал с помощью датчика преобразуется в эквивалентный ему электрический сигнал (электрический ток).
- •2.3 Передача информации
- •2.4 Обработка информации
- •2.5 Накопление информации
- •3. Основные понятия и методы теории информации и кодирования
- •3.1 Системы счисления и кодирования
- •3.1.1 Непозиционные системы счисления
- •3.1.2 Позиционные системы счисления
- •3.1.3 Двоичная система счисления
- •3.1.4 Другие системы счисления, используемые в компьютерных технологиях
- •3.2 Формы представления и преобразования информации
- •3.2.1 . Кодирование и форматы представления числовых данных
- •4. Экономическая информация как информационный ресурс
- •4.2 Экономическая информация как составляющая управленческой информации
- •4.3 Организационно-экономическое управление как объект компьютеризации
- •5.1. Основы функционирования эвм
- •5.1.1. Архитектура и структура эвм. Принципы фон Неймана
- •5.1.2. Принципы работы центрального процессора
- •5.1.3. Память эвм. Виды запоминающих устройств
- •5.1.4. Классификация эвм.
- •Классификация по этапам развития
- •5.1.5. Персональный эвм: структура и особенность
- •5.2. Базовая аппаратная конфигурация персональных эвм
- •5.2.1. Основные блоки пк
- •5.2.2. Системная плата
- •5.2.3. Микропроцессор
- •5.2.4. Внутренняя память
- •Специальная память
- •5.2.5. Внешние запоминающие устройства.
- •Накопители на гибких магнитных дисках
- •Накопители на жестких магнитных дисках
- •Накопители на компакт-дисках
- •Записывающие оптические и магнитооптические накопители
- •Флэш-память
- •5.2.6. Аудиоадаптер
- •5.2.7. Видеосистема компьютера
- •Монитор на базе электронно-лучевой трубки
- •Жидкокристаллические мониторы
- •Сенсорный экран
- •5.2.8. Клавиатура
- •5.2.9. Манипуляторы
- •5.3. Периферийные устройства персональных компьютеров.
- •5.3.1. Принтеры, сканеры, плоттеры
- •5.3.2. Модемы и факс-модемы
- •7. Программные средства реализации информационных процессов
- •7.2 Операционные системы: назначение и классификация
- •7.3 Понятие файла. Таблица fat
- •7.4 Операционная система ms-dos
- •7.14 Базы данных
- •Концепция баз данных
- •Технология бд
- •Проектирование баз данных
- •2. Логическое проектирование и выбор инструментальных средств субд. Инфологическое проектирование
- •Функциональный и объектный подход
- •Логическое проектирование
- •Модели данных
- •Реляционная модель
- •7.5.3 Реляционные системы управления базой данных и их характеристики
- •Проектирование реляционной бд
- •Система управления базой данных Microsoft Access
- •Структура таблицы и типы данных
- •Ввод данных в ячейки таблицы
- •Редактирование данных
- •Сортировка данных
- •Отбор данных с помощью фильтра
- •Ввод и просмотр данных посредством формы
- •Формирование запросов и отчетов для однотабличной базы данных
- •Формирование отчетов
- •Тема 8. Информационные технологии
- •8.1 Понятие информационных технологий
- •8.2 Этапы развития информационных технологий
- •8.3 Виды информационных технологий
- •8.4 Основные компоненты информационных технологий
- •9. Информационные системы
- •9.1 Понятие информационных систем и этапы их развития
- •9.2 Структура информационных систем
- •9.3 Классификация информационных систем
- •9.4 Специализированные поисковые информационные системы.
- •9.6 Основы проектирования информационных систем
- •9.7 Интеллектуальные информационные системы.
- •Тема 10. Тенденции и перспективы развития компьютерной техники и информационных технологий
- •10.1 Тенденции и перспективы развития эвм
- •10.1.1 Этапы развития эвм
- •10.1.3 Перспективы развития эвм, основанных на принципах фон Немана
- •10.1.4 Нейрокомпьютеры и перспективы их развития
- •10.2 Перспективы развития информационных технологий
- •11. Модели решения функциональных и вычислительных задач
- •11.1 Этапы решения задач на эвм
- •11.2 Понятие модели, классификация моделей
- •11.3 Использование моделей при решении задач на эвм
- •11.4 Инструментарий решения функциональных и вычислительных задач
- •12. Алгоритмизация
- •12.1 Понятие алгоритма
- •12.2. Свойства алгоритмов
- •12.3. Способы представления алгоритмов
- •12.4. Базовые алгоритмические конструкции
- •12.4.1. Базовая структура «следование» (линейная структура)
- •12.4.2. Базовая структура «ветвление»
- •12.4.3. Базовая структура «цикл»
- •Тема №13 Стили программирования
- •13.1 Понятия стиля программирования и проектирования программ
- •13.2 Неавтоматизированное и автоматизированное программирование
- •13.3 Процедурное программирование
- •13.3.1 Структурное проектирование
- •13.3.2 Модульное программирование
- •13.4 Логическое и функциональное программирование Логическое программирование
- •13.5 Объектно-ориентированное проектирование
- •17.1 Основные сведения о компьютерных сетях. Локальные и глобальные сети эвм.
- •17.1.1 Преимущества использования локальных сетей в решении прикладных задач обработки данных
- •Способы коммутации данных.
- •17.1.2 Классификация компьютерных сетей
- •Одноранговые сети;
- •Сети на основе сервер;.
- •Комбинированные сети.
- •17.1.3 Топология компьютерных сетей
- •Наиболее распространенные виды топологий сетей:
- •17.2. Принципы взаимодействия сетевых устройств
- •17.2.1. Интерфейсы, протоколы, стеки протоколов
- •17.2.2. Модель iso/osi
- •17.3. Функциональное назначение основных видов коммуникационного оборудования
- •17.3.1. Типовой состав оборудования локальной сети
- •Роль кабельной системы
- •Сетевые адаптеры
- •Физическая структуризация локальной сети. Повторители и концентраторы
- •Логическая структуризация сети. Мосты и коммутаторы
- •Маршрутизаторы
- •17.3.2. Функциональное соответствие видов коммуникационного оборудования уровням модели osi
- •17.4 Стандарты технологии Ethernet. Метод доступа csma/cd
- •Метод доступа csma/cd
- •17.5 Стандарт Token Ring
- •17.5.1. Основные характеристики стандарта
- •17.5.2. Маркерный метод доступа
- •17.6.1. Функции и характеристики сетевых операционных систем
- •17.6.2 Клиент-серверные приложения
- •Клиенты и серверы локальных сетей
- •Системная архитектура "клиент-сервер"
- •18.1. История и принципы организации глобальных компьютерных сетей
- •18.2. Функционирование Интернет
- •18.2.1. Передача данных в Интернет
- •18.2.2. Подключение к Интернет
- •18.2.3. Семейство сетевых протоколов
- •18.2.4.Система адресации в Интернет
- •18.3 Службы Интернета
- •18.3.4. Usenet – электронные новости
- •18.4 Просмотр Web-страниц
- •18.4.1 Общие сведения о программах просмотра
- •18.4.2. Доступ к нужным Web-страницам
- •18.4.3. Упрощение доступа к часто посещаемым страницам
- •18.4.4. Доступ к ресурсам Интернета в автономном режиме
- •18.4.5. Настройка обозревателя
- •18.5. Поиск информации в Интернете
- •18.5.1. Поисковые системы
- •18.5.2. Правила выполнения запросов
- •18.5.3. Алгоритм информационного поиска в режиме удаленного доступа
- •Тема 19. Основы защиты информации и сведений,
- •19.1 Информационная безопасность, способы и средства защиты информации
- •19.2 Организационные и правовые методы защиты информации
- •19.3 Обеспечение безопасности и сохранности информации в вычислительных системах и сетях
- •19.3.1 Технические методы защиты информации
- •19.3.2 Программные методы защиты информации к программным методам защиты информации относятся резервирование и восстановление файлов, применение антивирусных программ, использование паролей.
- •19.3.2.1 Резервирование файлов
- •19.3.2.2 Восстановление файлов
- •19.3.2.3 Пароли
- •19.4 Классификация компьютерных вирусов и антивирусных программ
- •Различают следующие виды антивирусных программ:
- •Своевременное обнаружение зараженных вирусами файлов и дисков, полное уничтожение обнаруженных вирусов на каждом компьютере позволяют избежать распространения вирусной эпидемии на другие компьютеры.
- •19.5 Защита информации в компьютерных системах методом криптографии
- •Тема 20. Компьютерная графика
- •20.1 Представление в компьютере графической информации
- •20.1.1 Растровые рисунки
- •20.1.2 Векторные рисунки
- •20.1.3 Фрактальная графика
- •20.1.4. Способы создания цвета и кодирование информации
- •20.1.5 Форматы графических файлов
- •20.2 Оборудование для работы с изображениями
- •20.2.1 Компьютер для работы с изображениями
- •20.2.3 Оборудование для ввода графической информации в компьютер
- •20.3 Простейшие графические программы
- •20.4 Обзор современного графического программного обеспечения
17.3. Функциональное назначение основных видов коммуникационного оборудования
17.3.1. Типовой состав оборудования локальной сети
Фрагмент вычислительной сети (Рисунок 17.15) включает основные типы коммуникационного оборудования, применяемого сегодня для образования локальных сетей и соединения их через глобальные связи друг с другом. Для построения локальных связей между компьютерами используются различные виды кабельных систем, сетевые адаптеры, концентраторы-повторители, мосты, коммутаторы и маршрутизаторы. Для подключения локальных сетей к глобальным связям используются специальные выходы (WAN-порты) мостов и маршрутизаторов, а также аппаратура передачи данных по длинным линиям – модемы (при работе по аналоговым линиям) или же устройства подключения к цифровым каналам (TA – терминальные адаптеры сетей ISDN, устройства обслуживания цифровых выделенных каналов типа CSU/DSU и т.п.).
Рисунок 17.15. Фрагмент сети
Роль кабельной системы
В коммуникационных системах, к которым относятся и компьютерные сети, средой передачи называют собственно среду распространения и/или волноведущую (направляющую) систему, по которой сигнал – электромагнитная волна – распространяется от передатчика к приемнику. Среды передачи данных можно разделить на кабельные и беспроводные. При передаче сигналов по кабельным средам волны распространяются вдоль направляющей системы, например оптического волокна.
Атмосфера и космическое пространство – примеры беспроводных сред. Электромагнитные волны могут распространяться в таких средах как в условиях прямой видимости, так и путем многократных переотражений (дифракции) на препятствиях.
Для построения локальных связей в вычислительных сетях в настоящее время используются различные виды кабелей:
Витая пара.
Коаксиальный кабель.
Оптоволоконный кабель.
Рассмотрим подробнее каждый вид кабеля.
Витая пара
Неэкранированная витая пара (UTP, unshielded twisted pair) - это кабель, в котором изолированная пара проводников скручена с небольшим числом витков на единицу длины. Скручивание проводников уменьшает электрические помехи извне при распространении сигналов по кабелю.
Существует семь категорий витой пары.
Неэкранированная витая пара имеет волновое сопротивление 100 Ом (стандарт ISO 11801 допускает также 120 Ом).
Рисунок 17.16 Неэкранированная витая пара
Кабель позволяет соединять напрямую только два компьютера, поэтому в сетях построенных на витой паре преобладает топология типа "звезда" , когда каждый из компьютеров, при помощи своего кабеля подключен напрямую к дополнительному сетевому устройству – концентратору (hub), который и обеспечивает взаимодействие между компьютерами в сети. Таким образом, при повреждении кабеля, сеть продолжит функционировать, а исчезнет связь только с одним компьютером, что легко диагностируется и устраняется. С другой стороны, при повреждении концентратора сеть станет недоступной для всех компьютеров, подключенных к нему.
В экранированной витой паре (STP, shielded twisted pair) изолированная пара проводников дополнительно помещена в экранирующую оплетку, что еще в большей степени увеличивает степень помехозащищенности сигналов. Экранированные витые пары внешне напоминают силовые электрокабели, используемые в быту.
По экранированным витым парам, передают только данные, голос не передают. Экранирование защищает передаваемые сигналы от внешних помех, а также уменьшает вредное для здоровья электромагнитное излучение. Однако наличие заземляемого экрана удорожает кабель и усложняет его прокладку.
Коаксиальный кабель
Тонкий коаксиальный кабель RG-58 (иногда называется CheapcrNet или ThinNet) представляет собой медный провод, экранированный при помощи оплетки. Толщина кабеля 6 мм. Волновое сопротивление 50 Ом. Следует отличать тонкий коаксиальный от телевизионного кабеля, применяемого в кабельном телевидении. Несмотря на схожесть, телевизионный кабель (RG-59) имеет волновое сопротивление 75 Ом и не предназначен для использования в компьютерной сети.
Сети, построенные на тонком кабеле Ethernet, имеют топологию "общая шина" , т.е. все компьютеры в сегменте сети подключены к одному кабелю. В связи с этим, перспективнее строить сети на основе кабеля "витая пара".
Толстый коаксиальный кабель (RG-8 и RG-11) имеет толщину 12 мм и бывает двух разновидностей: гибкий и жесткий. Он имеет большую степень помехозащищенности, большую механическую прочность, а также позволяет подключать новый компьютер к кабелю, не останавливая работу сети. Однако он сложен при прокладке, а для подключения к нему требуется специальное устройство (трансивер). Трансивер устанавливается непосредственно на кабеле контактно (прокалыванием) или бесконтактно, и питается от сетевого адаптера компьютера. Основная область применения толстого коаксиального кабеля - магистральные линии, соединяющие этажи здания (если использовать оптоволоконный кабель не позволяют средства).
Оптоволоконный кабель
В оптоволоконном кабеле для передачи сигналов используется свет. Он обычно состоит из центральной стеклянной нити толщиной в несколько микрон (световодаили или оптоволокна ), покрытой сплошной стеклянной оболочкой, обладающей меньшим показателем преломления, чем световод. Распространяясь по световоду, лучи света не выходят за его пределы, отражаясь от покрывающею слоя оболочки. Все это в свою очередь спрятано во внешнюю защитную оболочку. В первых оптоволоконных кабелях в качестве материала для световода использовалось стекло. В современных разработках используется также пластик. В качестве источников света в таких кабелях применяются светодиоды (длина волны 850 нм и 1300 нм) или полупроводниковые лазеры (длина волны 1300 нм и 1500 нм), а информация кодируется путем изменения интенсивности света.
На приемном конце кабеля детектор преобразует световые импульсы в электрические cигналы. Волоконно-оптические кабели присоединяют к оборудованию разъемами MIC, ST и SC. Различают следующие виды оптоволоконных кабелей:
одномодовый кабель;
многомодовый кабель со ступенчатым изменением показателя преломления;
многомодовый кабель с плавным изменением показателя преломления.
В одномодовом кабеле (Single Mode Fiber, SMF) используется центральный проводник очень малого диаметра, соизмеримого с длиной волны света— от 5 до 10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. В качестве источника света используется полупроводниковый лазер. Это самый дорогой тип кабеля, с самыми высокими показателями.
Рисунок 17.17. Виды оптоволоконных кабелей
В многомодовых кабелях (Multi Mode Fiber, MMF) используются более широкие внутренние сердечники, которые легче изготовить технологически. В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения луча называется модой луча. В качестве источников излучения в многомодовых кабелях применяются светодиоды, т.к. они дешевле. В целом, многомодовое волокно дешевле одномодового, хотя его характеристики хуже (больше затухание сигнала, уже полоса пропускания).
В качестве среды передачи данных в вычислительных сетях используются также электромагнитные волны различных частот – КВ, УКВ, СВЧ. Однако, пока в локальных сетях радиосвязь используется только в тех случаях, когда оказывается невозможной прокладка кабеля. Для построения глобальных каналов этот вид среды передачи данных используется шире – на нем построены спутниковые каналы связи и наземные радиорелейные каналы, работающие в зонах прямой видимости в СВЧ-диапазонах.
Согласно зарубежным исследованиям (журнал LAN Technologies), 70% времени простоев обусловлено проблемами, возникшими вследствие низкого качества применяемых кабельных систем. Поэтому так важно правильно построить фундамент сети – кабельную систему. В последнее время в качестве такой надежной основы все чаще используется структурированная кабельная система.
Структурированная кабельная система (Structured Cabling System, SCS) – это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях.
Рисунок 17.18. Структурированная кабельная система (СКС).
Преимущества структурированной кабельной системы:
Универсальность. Структурированная кабельная система при продуманной организации может стать единой средой для передачи компьютерных данных в локальной вычислительной сети, организации локальной телефонной сети, передачи видеоинформации и даже передачи сигналов от датчиков пожарной безопасности или охранных систем.
Увеличение срока службы. Срок старения хорошо структурированной кабельной системы может составлять 8-10 лет.
Уменьшение стоимости добавления новых пользователей и изменения их мест размещения. Стоимость кабельной системы в основном определяется не стоимостью кабеля, а стоимостью работ по его прокладке. Поэтому более выгодно провести однократную работу по прокладке кабеля, возможно с большим запасом по длине, чем несколько раз выполнять прокладку, наращивая длину кабеля. Это помогает быстро и дешево изменять структуру кабельной системы при перемещениях персонала или смене приложений.
Возможность легкого расширения сети. Структурированная кабельная система является модульной, поэтому ее легко наращивать, позволяя легко и ценой малых затрат переходить на более совершенное оборудование, удовлетворяющее растущим требованиям к системам коммуникаций.
Обеспечение более эффективного обслуживания. Структурированная кабельная система облегчает обслуживание и поиск неисправностей по сравнению с шинной кабельной системой.
Надежность. Структурированная кабельная система имеет повышенную надежность поскольку обычно производство всех ее компонентов и техническое сопровождение осуществляется одной фирмой-производителем.