
- •Определение ос. Назначение и функции операционной системы
- •Место ос в структуре вычислительной системы
- •Понятие ресурса. Управление ресурсами в вычислительной системе
- •Критерии эффективности и классы ос
- •Эволюция ос
- •Современный этап развития ос
- •Функциональные компоненты ос персонального компьютера
- •Требования, предъявляемые к современным ос
- •Классификации ос.
- •Архитектура ос. Ядро и вспомогательные модули
- •Классическая архитектура ос. Монолитные и многослойные ос
- •Микроядерная архитектура ос
- •Многослойная модель ядра ос
- •Функции ос по управлению процессами
- •Процессы и потоки
- •Состояния потока
- •Планирование и диспетчеризация потоков, моменты перепланировки
- •Алгоритм планирования, основанный на квантовании
- •Приоритетное планирование
- •Алгоритмы планирования ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения»
- •Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование
- •Алгоритм планирования Windows nt
- •Планирование в ос реального времени
- •Синхронизация процессов и потоков: цели и средства синхронизации
- •Ситуация состязаний (гонки). Способы предотвращения.
- •Способы реализации взаимных исключений: блокирующие переменные, критические секции, семафоры Дейкстры Блокирующие переменные
- •Критические секции
- •Семафоры
- •Взаимные блокировки. Условия, необходимые для возникновения тупика
- •Обнаружение взаимоблокировки при наличии одного ресурса каждого типа
- •Обнаружение взаимоблокировок при наличии нескольких ресурсов каждого типа
- •Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов
- •Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов
- •Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, ждущие таймеры, мониторы
- •Мьютексы
- •Системные семафоры
- •События
- •Ждущие таймеры
- •Мониторы Хоара
- •Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты)
- •Прерывания (понятие, классификация, обработка прерываний).
- •Средства вызова процедур.
- •Механизм вызова при переключении между задачами.
- •Обработка аппаратных прерываний.
- •Функции ос по управлению памятью
- •Виртуальная память
- •Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы)
- •Страничное распределение памяти
- •Алгоритмы замещения страниц.
- •Оптимальный (нереализуемый)
- •Исключение недавно использованных страниц
- •Алгоритм «первый пришёл, первый ушёл» (fifo)
- •«Второй шанс»
- •Алгоритм нечастого использования
- •«Рабочий набор»
- •Сегментное распределение памяти.
- •Сегментно-страничное распределение памяти.
- •Средства поддержки сегментации памяти в мп Intel Pentium.
- •Сегментный режим распределения памяти в мп Intel Pentium.
- •Сегментно-страничный режим распределения памяти в мп Intel Pentium.
- •Средства защиты памяти в мп Intel Pentium.
- •Случайное отображение основной памяти на кэш.
- •Детерминированное отображение основной памяти на кэш.
- •Комбинированный способ отображения основной памяти на кэш.
- •Кэширование в мп Intel Pentium. Буфер ассоциативной трансляции Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэширование в мп Intel Pentium. Кэш первого уровня Кэширование в процессоре Pentium
- •Кэш первого уровня
- •Задачи ос по управлению файлами и устройствами
- •Организация параллельной работы устройств ввода-вывода и процессора
- •Разделение устройств и данных между процессами
- •Обеспечение удобного логического интерфейса между устройствами и остальной частью системы
- •Поддержка широкого спектра драйверов и простота включения нового драйвера в систему
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка нескольких файловых систем
- •Поддержка синхронных и асинхронных операций ввода-вывода
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Физическая организация жесткого диска Диски, разделы, секторы, кластеры
- •Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Физическая организация и адресация файлов
- •Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32
- •Ufs : структура тома, адресация файлов, каталоги, индексные дескрипторы
- •Ntfs: структура тома
- •Структура тома ntfs
- •Ntfs: типы файлов, организация каталогов. Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции. Процедура открытия файла. Открытие файла
- •Организация контроля доступа к файлам. Доступ к файлам как частный случай доступа к разделяемым ресурсам
- •Механизм контроля доступа
- •Контроль доступа к файлам на примере Unix.
- •Отказоустойчивость файловых систем.
- •Восстанавливаемость файловых систем
- •Протоколирование транзакций
- •Процедура самовосстановления ntfs.
- •Избыточные дисковые подсистемы raid
- •Многоуровневые драйверы
- •Дисковый кэш
- •Параметры, свойства и показатели эффективности ос.
- •Основные и частные показатели эффективности ос.
- •Мониторинг производительности ос.
- •Настройка и оптимизация ос.
Буфер ассоциативной трансляции
В буфере TLB кэшируются дескрипторы страниц из таблицы страниц. Для хранения дескриптора в кэше отводится одна строка. Каждая строка дополнена тегом, в котором содержится номер соответствующей виртуальной страницы. Строки объединены по четыре в группы, называемые наборами. Таблица TLB, используемая для преобразования адресов инструкций, имеет 32 строки и соответственно 8 наборов. Номер набора называют индексом (index). Таким образом, путем кэширования может быть получен физический адрес для доступа к 32 страницам памяти, содержащим инструкции.
Рисунок 27. Буфер ассоциативной трансляции
После
того как механизмом сегментации получен
линейный адрес, он должен быть преобразован
в физический адрес. Для этого прежде
всего необходимо найти дескриптор
страницы, к которой принадлежит данный
адрес, и извлечь из него номер физической
страницы. Обычная процедура предусматривает
обращение к таблице разделов, а затем
к таблице страниц. Однако физический
адрес может быть получен гораздо быстрее
благодаря тому, что в буфере TLB хранятся
копии дескрипторов наиболее интенсивно
используемых страниц. Поэтому перед
тем, как начать сравнительно длительную
процедуру преобразования адресов,
делается попытка обнаружить нужный
дескриптор страницы в быстрой ассоциативной
памяти TLB. Затем на основании номера
физической страницы, полученного из
TLB, вычисляется физический адрес.
Если произошло кэш-попадание, то номер физической страницы быстро поступает в схему формирования физического адреса. Если произошел промах и нужного дескриптора в TLB нет, то запускается многоэтапная процедура преобразования адреса, включающая обращения к таблицам разделов и страниц. Когда нужный дескриптор отыскивается в таблице страниц, он копируется в TLB. Номер набора, в который записывается кэшируемый дескриптор, определяется тремя младшими разрядами номера виртуальной страницы.
Однако поскольку в наборе имеется четыре строки, необходимо определить, в какую именно надо поместить кэшируемые данные. Дескриптор записывается либо в первую попавшуюся свободную строку, либо, если все строки заняты, в строку, к которой дольше всего не обращались. Признаком занятости строки служит бит действительности v, имеющийся у каждой строки. Если v=0, значит, строка свободна для записи в нее нового содержимого.
Таким образом, в буфере TLB процессора Pentium используется комбинированный способ отображения кэшируемых данных на кэш-память: прямое отображение дескрипторов на наборы и случайное отображение на строки в пределах набора.
Наличие TLB позволяет в подавляющем числе случаев заменить сравнительно долгую процедуру преобразования адресов, связанную с несколькими обращениями к оперативной памяти, быстрым поиском в ассоциативной памяти.
Кэширование в мп Intel Pentium. Кэш первого уровня Кэширование в процессоре Pentium
См. вопрос 50 на стр. 51
Кэш первого уровня
Кэш первого уровня используется на этапе обработки запроса к основной памяти по физическому адресу.
Работа кэш-памяти первого уровня имеет много общего с работой буфера TLB. В TLB единицей хранения является дескриптор, а в кэше первого уровня — байт данных. Обновление данных в кэше происходит блоками по 16 байт. Таким образом, младшие 4 бита физического адреса байта могут интерпретироваться как смещение в блоке, а старшие разряды — как номер блока. Для хранения блоков данных в кэше отводятся строки, также имеющие объем 16 байт. Строки объединены в наборы по четыре. При объеме кэша 16 Кбайт в него входят 256 (28) наборов.
При копировании данных в кэш номера блоков основной памяти прямо отображаются на номера наборов. Для этого в адресе основной памяти, относящегося к одному из байтов, входящих в блик, значение 8 битов, находящихся перед битами смещения, интерпретируется как номер набора в кэш-памяти. Остальные старшие биты адреса в дальнейшем используются в качестве тега.
Рисунок 28. Кэш первого уровня процессора Pentium
Так же как в TLB, выбор строки в наборе осуществляется на основе анализа битов действительности и битов обращения по алгоритму PseudoLRU. Блок данных заносится в строку кэш-памяти вместе со своим тегом — старшими разрядами адреса основной памяти. Бит действительности строки устанавливается в 1.
При возникновении запроса на чтение из основной памяти вначале делается попытка найти данные в кэше (либо поиск в кэше совмещается с выполнением запроса к основной памяти). По индексу, извлеченному из адреса запроса, определяется набор, в котором могут находиться искомые данные. Затем для строк данного набора, содержимое которых действительно (установлены биты действительности), выполняется ассоциативный поиск: старшие разряды адреса из запроса сравниваются с тегами всех строк набора. Если для какой-нибудь строки фиксируется совпадение, это означает, что произошло кэш-попадание, и из соответствующей строки извлекается байт, смещение которого относительно начала строки определяется четырьмя младшими разрядами из адреса запроса.
Для согласования данных в кэше первого уровня используется метод сквозной записи, то есть при возникновении запроса на запись обновляется не только содержимое соответствующей ячейки основной памяти, но и его копия в кэш-памяти. Заметим также, что запрос на запись при промахе не вызывает обновления кэша.