
- •Определение ос. Назначение и функции операционной системы
- •Место ос в структуре вычислительной системы
- •Понятие ресурса. Управление ресурсами в вычислительной системе
- •Критерии эффективности и классы ос
- •Эволюция ос
- •Современный этап развития ос
- •Функциональные компоненты ос персонального компьютера
- •Требования, предъявляемые к современным ос
- •Классификации ос.
- •Архитектура ос. Ядро и вспомогательные модули
- •Классическая архитектура ос. Монолитные и многослойные ос
- •Микроядерная архитектура ос
- •Многослойная модель ядра ос
- •Функции ос по управлению процессами
- •Процессы и потоки
- •Состояния потока
- •Планирование и диспетчеризация потоков, моменты перепланировки
- •Алгоритм планирования, основанный на квантовании
- •Приоритетное планирование
- •Алгоритмы планирования ос пакетной обработки: «первым пришел – первым обслужен», «кратчайшая задача – первая», «наименьшее оставшееся время выполнения»
- •Алгоритмы планирования в интерактивных ос: циклическое, приоритетное, гарантированное, лотерейное, справедливое планирование
- •Алгоритм планирования Windows nt
- •Планирование в ос реального времени
- •Синхронизация процессов и потоков: цели и средства синхронизации
- •Ситуация состязаний (гонки). Способы предотвращения.
- •Способы реализации взаимных исключений: блокирующие переменные, критические секции, семафоры Дейкстры Блокирующие переменные
- •Критические секции
- •Семафоры
- •Взаимные блокировки. Условия, необходимые для возникновения тупика
- •Обнаружение взаимоблокировки при наличии одного ресурса каждого типа
- •Обнаружение взаимоблокировок при наличии нескольких ресурсов каждого типа
- •Предотвращение взаимоблокировки. Алгоритм банкира для одного вида ресурсов
- •Предотвращение взаимоблокировки. Алгоритм банкира для нескольких видов ресурсов
- •Синхронизирующие объекты ос: системные семафоры, мьютексы, события, сигналы, ждущие таймеры, мониторы
- •Мьютексы
- •Системные семафоры
- •События
- •Ждущие таймеры
- •Мониторы Хоара
- •Организация обмена данными между процессами (каналы, разделяемая память, почтовые ящики, сокеты)
- •Прерывания (понятие, классификация, обработка прерываний).
- •Средства вызова процедур.
- •Механизм вызова при переключении между задачами.
- •Обработка аппаратных прерываний.
- •Функции ос по управлению памятью
- •Виртуальная память
- •Алгоритмы распределения памяти без использования внешних носителей (фиксированные, динамические, перемещаемые разделы)
- •Страничное распределение памяти
- •Алгоритмы замещения страниц.
- •Оптимальный (нереализуемый)
- •Исключение недавно использованных страниц
- •Алгоритм «первый пришёл, первый ушёл» (fifo)
- •«Второй шанс»
- •Алгоритм нечастого использования
- •«Рабочий набор»
- •Сегментное распределение памяти.
- •Сегментно-страничное распределение памяти.
- •Средства поддержки сегментации памяти в мп Intel Pentium.
- •Сегментный режим распределения памяти в мп Intel Pentium.
- •Сегментно-страничный режим распределения памяти в мп Intel Pentium.
- •Средства защиты памяти в мп Intel Pentium.
- •Случайное отображение основной памяти на кэш.
- •Детерминированное отображение основной памяти на кэш.
- •Комбинированный способ отображения основной памяти на кэш.
- •Кэширование в мп Intel Pentium. Буфер ассоциативной трансляции Кэширование в процессоре Pentium
- •Буфер ассоциативной трансляции
- •Кэширование в мп Intel Pentium. Кэш первого уровня Кэширование в процессоре Pentium
- •Кэш первого уровня
- •Задачи ос по управлению файлами и устройствами
- •Организация параллельной работы устройств ввода-вывода и процессора
- •Разделение устройств и данных между процессами
- •Обеспечение удобного логического интерфейса между устройствами и остальной частью системы
- •Поддержка широкого спектра драйверов и простота включения нового драйвера в систему
- •Динамическая загрузка и выгрузка драйверов
- •Поддержка нескольких файловых систем
- •Поддержка синхронных и асинхронных операций ввода-вывода
- •Многослойная модель подсистемы ввода-вывода Общая схема
- •Менеджер ввода-вывода
- •Физическая организация жесткого диска Диски, разделы, секторы, кластеры
- •Файловая система. Определение, состав, типы файлов. Логическая организация файловой системы Цели и задачи файловой системы
- •Типы файлов
- •Иерархическая структура файловой системы
- •Физическая организация и адресация файлов
- •Fat. Структура тома. Формат записи каталога. Fat12, fat16, fat32
- •Ufs : структура тома, адресация файлов, каталоги, индексные дескрипторы
- •Ntfs: структура тома
- •Структура тома ntfs
- •Ntfs: типы файлов, организация каталогов. Структура файлов ntfs
- •Каталоги ntfs
- •Файловые операции. Процедура открытия файла. Открытие файла
- •Организация контроля доступа к файлам. Доступ к файлам как частный случай доступа к разделяемым ресурсам
- •Механизм контроля доступа
- •Контроль доступа к файлам на примере Unix.
- •Отказоустойчивость файловых систем.
- •Восстанавливаемость файловых систем
- •Протоколирование транзакций
- •Процедура самовосстановления ntfs.
- •Избыточные дисковые подсистемы raid
- •Многоуровневые драйверы
- •Дисковый кэш
- •Параметры, свойства и показатели эффективности ос.
- •Основные и частные показатели эффективности ос.
- •Мониторинг производительности ос.
- •Настройка и оптимизация ос.
Эволюция ос
Первый период (1945 -1955). В середине 40-х были созданы первые ламповые вычислительные устройства (в США и Великобритании), в СССР первая ламповая вычислительная машина появилась в 1951 году. Программирование осуществлялось исключительно на машинном языке. Элементная база – электронные лампы и коммуникационные панели. Операционных систем не было, все задачи организации вычислительного процесса решались вручную программистом с пульта управления. Системное программное обеспечение - библиотеки математических и служебных подпрограмм.
Второй период (1955 - 1965). С середины 50-х годов начался новый период в развитии вычислительной техники, связанный с появлением новой технической базы - полупроводниковых элементов (транзисторы). В эти годы появились первые алгоритмические языки и, следовательно, первые системные программы - компиляторы. Стоимость процессорного времени возросла, что потребовало уменьшения непроизводительных затрат времени между запусками программ. Появились первые системы пакетной обработки, увеличивающие коэффициент загрузки процессора. Системы пакетной обработки явились прообразом современных операционных систем, они стали первыми системными программами, предназначенными для управления вычислительным процессом. Был разработан формальный язык управления заданиями. Появился механизм виртуальной памяти.
Третий период (1965 - 1975). Переход к интегральным микросхемам. Создание семейств программно-совместимых машин (серия машин IBM System/360, советский аналог - машины серии ЕС). В этот период времени были реализованы практически все основные концепции, присущие современным ОС: мультипрограммирование, мультипроцессирование, многотерминальный режим, виртуальная память, файловая система, разграничение доступа и сетевая работа. В процессорах появился привилегированный и пользовательский режим работы, специальные регистры для переключения контекстов, средства защиты областей памяти и система прерываний. Другое нововведение - спулинг (spooling). Спулинг в то время определялся как способ организации вычислительного процесса, в соответствии с которым задания считывались с перфокарт на диск в том темпе, в котором они появлялись в помещении вычислительного центра, а затем, когда очередное задание завершалось, новое задание с диска загружалось в освободившийся раздел. Появился новый тип ОС - системы разделения времени. В конце 60-х годов начаты работы по созданию глобальной сети ARPANET, ставшей отправной точкой для Интернета. К середине 70-х годов широкое распространение получили мини-компьютеры. Их архитектура была значительно упрощена по сравнению с мейнфреймами, что нашло отражение и в их ОС. Экономичность и доступность мини-компьютеров послужила мощным стимулом к созданию первых локальных сетей. С середины 70-х годов началось массовое использование ОС UNIX. В конце 70-х был создан рабочий вариант протокола TCP/IP, в 1983 году он был стандартизирован.
Четвертый период (1980 - настоящее время). Следующий период в эволюции операционных систем связан с появлением больших интегральных схем (БИС). В эти годы произошел резкий рост степени интеграции и удешевление микросхем. Наступила эра персональных компьютеров. Компьютеры стали широко использоваться неспециалистами. Реализован графический интерфейс пользователя (GUI - Graphical User Interface), теория которого была разработана еще в 60-е годы. С 1985 года стала выпускаться Windows, это была графическая оболочка MS-DOS вплоть до 1995г., когда вышла полноценная ОС Windows 95. IBM и Microsoft совместно разработали операционную систему OS/2. Она поддерживала вытесняющую многозадачность, виртуальную память, графический пользовательский интерфейс, виртуальную машину для выполнения DOS-приложений. Первая версия вышла 1987 г. В дальнейшем Microsoft отказалась от OS/2 и приступила к разработке Windows NT. Первая версия вышла в 1993г.
В 1987г. была выпущена операционная система MINIX (прототип LINUX), она была построена по принципу микроядерной архитектуры.
В 80-е годы были приняты основные стандарты на коммуникационное оборудование для локальных сетей: в 1980 году –Ethernet, в 1985 – Token Ring, в конце 80-х – FDDI. Это позволило обеспечить совместимость сетевых ОС на нижних уровнях, а также стандартизировать интерфейс ОС с драйверами сетевых адаптеров.
В 90-е годы практически все ОС стали сетевыми. Появились специализированные ОС, предназначенные исключительно для решения коммуникационных задач (IOS компании Cisco Systems). Появление службы World Wide Web (WWW) в 1991 году придало мощный импульс развитию популярности Интернета. Развитие корпоративных сетевых операционных систем выходит на первый план. Возобновляется развитие ОС мейнфреймов. В 1991г. была выпущена LINUX. Чуть позже вышла FreeBSD (основой для нее послужила BSD UNIX).