
- •Интерференция света в тонких плёнках
- •Полосы равной толщины (интерференция от плёнки переменной толщины, клина).
- •Поляризация света при отражении
- •. Двойное лучепреломление
- •Основные идеи и принципы квантовой физики
- •Основные уравнения, связывающие корпускулярные свойства электромагнитного излучения (энергия и импульс фотона) с волновыми свойствами (частота или длина волны):
Поляризация света при отражении
Е сли угол падения света на границу раздела двух прозрачных диэлектриков (например, на поверхность стеклянной пластинки) отличен от нуля, то отраженный и преломленный лучи оказываются частично поляризованными. В отраженном луче преобладают колебания, перпендикулярные к плоскости падения (плоскость рисунка). В преломленном луче - колебания, параллельные плоскости падения (см.рис.5). Поляризацию объясняет электромагнитная теория Максвелла.
Закон Брюстера: Отраженный свет полностью линейно поляризован при угле падения a Бр , удовлетворяющем условию
tga Бр=n2/n1 (7)
При этом преломленный свет поляризован не полностью и угол между отраженным и преломленным лучами равен 90°.
. Двойное лучепреломление
В большинстве кристаллов наблюдается двойное лучепреломление - падающий луч раздваивается в кристалле на два преломленных луча. Один из лучей, который подчиняется закону преломления, называется обыкновенным, обозначается о. Другой луч не следует из закона преломления. Его называют необыкновенным лучом, обозначают е. Обыкновенный и необыкновенный лучи поляризованы во взаимно перпендикулярных плоскостях, они имеют различные скорости распространения и, следовательно, различные показатели преломления nо и nе. Двойное лучепреломление объясняется оптической анизотропией вещества.
Фундаментальным свойством световых лучей при их прохождении в
кристаллах является двойное лучепреломление, открытое в 1670 году
Бартолином и подробно исследованное Гюйгенсом, опубликовавшим в 1690 году
свой знаменитый “Трактат о свете, в котором изложены причины того, что
происходит при отражении и преломлении и, в частности, при необыкновенном
преломлении в кристаллах из Исландии.” Явление двойного лучепреломления
объясняется особенностями распространения света в анизотропных средах.
Если на кристалл исландского шпата направить узкий пучок света, то из
кристалла выйдут два пространственно разделенных луча, параллельных друг
другу и падающему лучу.
Закон
Малюса —
физический закон, выражающий зависимость
интенсивности линейно-поляризованного света после
его прохождения через поляризатор от
угла
между
плоскостями поляризации падающего
света и поляризатора.
где
—
интенсивность падающего на поляризатор
света,
—
интенсивность света, выходящего из
поляризатора,
—
коэффициент прозрачности поляризатора.
Установлен Э. Л. Малюсом в 1810 году.
В релятивистской форме
где
и
—
циклические частоты линейно поляризованных
волн, падающей на поляризатор и вышедшей
из него.
Свет с иной (не линейной) поляризацией может быть представлен в виде суммы двух линейно-поляризованных составляющих, к каждой из которых применим закон Малюса. По закону Малюса рассчитываются интенсивности проходящего света во всех поляризационных приборах, например в поляризационных фотометрах и спектрофотометрах. Потери на отражение, зависящие от и не учитываемые законом Малюса, определяются дополнительно.
ПОЛЯРИЗАЦИОННЫЕ ПРИБОРЫ - оптич. приборы для обнаружения, анализа, получения и преобразования поляризов. оптич. излучения, а также для разл. исследований и измерений, использующих явление поляризации света. К простейшим устройствам для получения и преобразования поляризов. света относятся поляризаторы (П.), фазовые пластинки (ФП), оптич. компенсаторы, деполяризаторы, оптич. стопы и др.
Поляроид — название синтетической пластиковой плёнки, используемой для поляризации света. Обычный свет превращается в плоскополяризированный, проходя через пластинки, сделанные из материала, называемого поляроидом, или через кристаллы кальцита (особая кристаллическая форма CaCO3), расположенные таким образом, что они образуют так называемую призму Николя.
Хорошим поляроидом являются кристаллы турмалина. Уже при толщине кристалла турмалина около 1 мм в нём практически полностью поглощается обыкновенный луч. Хорошим поляроидом также является герапатит, в котором уже при толщине 0,1 мм практически полностью поглощается один из лучей.
Если поляроид используется для получения поляризованного света, то он называется поляризатором.
ПОЛЯРИЗАЦИОННЫЕ ПРИЗМЫпростейшие поляризационные приборы, один из классов призм оптических П. п. служат линейными поляризаторами — с их помощью получают линейно-поляризованное оптическое излучение . Обычно П. п. состоят из двух или более трёхгранных призм, по меньшей мере одна из к-рых вырезается из оптически анизотропного кристалла. Проходящее через них излучение преодолевает наклонную границу раздела двух сред, на к-рой условия преломления света для компонент светового пучка, поляризованных в двух взаимно перпендикулярных плоскостях, резко различаются. В частности, для одной из этих компонент на границе раздела могут выполняться условия полного внутреннего отражения, в результате чего через П. п. проходит лишь др. компонента.
Вращение плоскости поляризации поперечной волны — физическое явление, заключающееся в повороте поляризационного вектора линейно-поляризованной поперечной волны вокруг её волнового вектора при прохождении волны через анизотропную среду. Волна может быть электромагнитной, акустической, гравитационной и т. д.
Вращение плоскости поляризации
(оптика) — явление, происходящее с лучами поляризованного света, проходящими через некоторые кристаллы, жидкости и пары, находящиеся в естественном состоянии или же под влиянием магнетизма. Световые лучи, исходящие от самосветящихся тел (солнце, пламя свечи или газа и т. п.) по своим физическим свойствам считаются типическими и нормальными. После отражения или преломления нормальные лучи, например солнечные, приобретают некоторые особенности, выступающие особенно отчетливо в случае преломления лучей света в кристаллах, обладающих способностью двойного лучепреломления (см. это слово), каковы, например, кристаллы исландского шпата. Если пропустить солнечный луч сквозь небольшое отверстие, сделанное в непрозрачной пластинке, за которой помещен кристалл исландского шпата, то из кристалла выйдут два луча равной силы света. Солнечный луч разделился, с небольшой потерей силы света, в кристалле на два луча равной световой силы, но по некоторым свойствам отличные от неизмененного солнечного луча и друг от друга. Для определительности в дальнейшем обозначим один из новообразовавшихся лучей буквою O, а другой — буквою E. Происхождение световых лучей приписывают колебательному движению светового эфира (см. Волны света), наполняющего все свободное пространство вселенной и междучастичные промежутки тел. Колебания эфирных частиц в каждом из двух лучей, образовавшихся в исландском шпате, происходят по прямым линиям и такие лучи называются прямолинейно поляризованными (см. Поляризация света). При этом распространение светового луча происходит по направлению, перпендикулярному к направлению колебаний.
Вращение плоскости поляризации объяснено О. Френелем. Согласно теории Френеля скорость распространения света в оптически активных веществах различна для лучей, поляризованных по кругу вправо и влево
Оптически активные вещества — среды, обладающие естественной оптической активностью. Оптическая активность — это способность среды (кристаллов, растворов, паров вещества) вызывать вращение плоскости поляризации проходящего через неё оптического излучения (света). Метод исследования оптической активности — поляриметрия. Оптически активные вещества подразделяются на 2 типа.
Относящиеся к 1-му из них оптически активны в любом агрегатном состоянии (сахара, камфора, винная кислота), ко 2-му — активны только в кристаллической фазе (кварц, киноварь). У веществ 1-го типа оптическая активность обусловлена асимметричным строением их молекул, 2-го типа — специфической ориентацией молекул (ионов) в элементарных ячейках кристалла (асимметрией поля сил, связывающих частицы в кристаллической решётке).
Зоны
Френеля,
участки, на которые разбивают волновую
поверхность при рассмотрении дифракции
волн (Гюйгенса—Френеля
принцип). Зона
Френеля –
участок волнового фронта, границы
которого отстоят от точки наблюдения
на расстояниях
и
.
Зоны Френеля выбираются так, чтобы удаление каждой следующей зоны от точки наблюдения было на половину длины волны больше, чем удаление предыдущей зоны от той же точки. Если смотреть на волновую поверхность из точки P, то границы зон Френеля будут представлять собой концентрические окружности.
Зоны
Френеля имеют следующие особенности:1.При
не слишком больших значениях m площади
зон Френеля примерно одинаковы и равны
площади центральной зоны.
,
где
-
радиус волновой поверхности.2.Зоны
Френеля являются элементами волнового
фронта, а так как разность хода лучей
от двух соседних зон отличается на
,
то эти лучи придут в точку Р в
противофазе и, следовательно, будут
гасить друг друга, т.е. амплитуда
результирующего колебания, вызванного
совместным действием двух соседних зон
будет равна разности амплитуд колебаний,
возбуждаемых в точке В волнами,
идущими от каждой зоны в отдельности.Радиус
зоны Френеля:
, если
положить, что
,
то для радиуса центральной зоны.
.
Радиусы остальных зон возрастают как
.
Эффект Фарадея (продольный электрооптический эффект Фарадея) — магнитооптический эффект, который заключается в том, что при распространении линейно поляризованного света через оптически неактивное вещество, находящееся в магнитном поле, наблюдается вращение плоскости поляризации света.