
- •1.Предмет и задачи тд. Модели тд.
- •2.Модели тд. Объяснение агрегатных состояний вещества.
- •3.Методы тд.
- •4.Исходные понятия тд.
- •5.Постулаты термодинамики.
- •6.Начала тд.
- •7.Термическое и калорическое уравнения состояния. Термическое уравнение состояние идеального газа.
- •8.Внутренняя энергия идеального газа. Калорическое уравнение состояние идеального газа.
- •9.I начало термодинамики.
- •I начало тд обобщает закон сохранения энергии для тд процессов: количество теплоты, сообщаемое системе, идет на изменение ее внутренней энергии и совершение системой работы.
- •10.Теплоемкость.
- •11.Теплоемкость идеального газа.
- •12. 13.Теорема о равнораспределении энергии по степеням свободы. Число степеней свободы молекул. Число степеней свободы молекул. Выражение для внутренней энергии идеального газа.
- •14.Изохорический процесс: уравнение, график в pv, pt, vt координатах.
- •15.I начало термодинамики в изохорическом процессе.
- •16.Изобарический процесс: уравнение, график в pv, pt, vt координатах.
- •17. I начало термодинамики в изобарическом процессе.
- •18.Изотермический процесс: уравнение, график в pv, pt, vt координатах.
- •19.I начало термодинамики в изотермическом процессе.
- •20.Адиабатический процесс. Уравнение адиабаты. График адиабаты.
- •21.I начало термодинамики в адиабатическом процессе.
- •22.Политропный процесс. Уравнение политропы, показатель политропы, график политропы.
- •23.I начало термодинамики в политропном процессе.
- •24.Изопроцессы как предельные случаи политропного процесса.
- •25.Обратимые и циклические процессы.
- •26. Тепловые машины. Эффективность работы тепловой машины.
- •27.Холодильные машины. Эффективность работы холодильной машины.
- •28.29.Цикл Карно. К.П.Д. Цикла Карно. Идеальная тепловая машина Карно.
- •30. I Теорема Карно.
- •31.II теорема Карно. Реальные тепловые машины.
- •32.II начало термодинамики в формулировках Кельвина и Клаузиуса.
- •33.Тождество Клаузиуса, неравенство Клаузиуса.
- •34. Понятие энтропии. Свойства энтропии. Размерность.
- •35.Энтропия в обратимых и необратимых процессах.
- •36. Энтропия идеального газа.
- •37.III начало тд. Следствия III начала тд.
- •38.Энтальпия.
- •39.Свободная энергия идеального газа.
- •40.Метод тд потенциалов.
- •С 41 по 46 не разделила!смотреть тут(то что красным)!!!:
- •48.Условия равновесия и устойчивости системы в термостате при постоянном объеме.
- •49.Условия равновесия и устойчивости системы в термостате при постоянном внешнем давлении.
- •50.Условия равновесия и устойчивости системы при постоянных энтропии и давлении.
- •51. Условия равновесия и устойчивости системы при постоянных энтропии и объеме.
- •52.Условия равновесия и устойчивости системы с переменным числом частиц в термостате, при постоянных химическом потенциале и объеме.
- •53. Условия равновесия и устойчивости двухфазной однокомпонентной изолированной системы.
- •54.Принцип Ле Шателье-Брауна. Примеры проявления принципа Ле Шателье-Брауна.
- •55.Начала статистической физики: исходные понятия теории вероятности.
- •56.Начала статистической физики: макро- и микросостояния, статистический ансамбль, микроканонический ансамбль, постулат равновероятности.
- •57.Начала статистической физики: эргодическая гипотеза, статистический вес, статистическое толкование энтропии.
- •58.Начала статистической физики: флуктуации.
- •65.Характерные скорости распределения Максвелла: средняя квадратичная скорость.
- •66.Характерные скорости распределения Максвелла: наиболее вероятная скорость.
- •67. Подсчет числа молекул скорости, которых лежат в заданном диапазоне.
- •68.Экспериментальная проверка закона распределения.
- •69.Вывод основного уравнения молекулярно-кинетической теории идеального газа.
- •70.Вывод уравнения состояния. Закон Дальтона. Закон Авогадро.
- •71.72.( Не разделены!)Распределение Больцмана. (72)Барометрическая формула.
- •73.Экспериментальное определение постоянной Авогадро.
- •74.Теорема о равнораспределении энергии по степеням свободы.
- •75.Расхождение теории теплоемкости идеального газа с экспериментом.
- •76.Статистика Ферми-Дирака (подсчет числа микросостояний, функция распределения).
- •77.Статистика Бозе-Эйнштейна (подсчет числа микросостояний, функция распределения).
- •78.Длина свободного пробега.
- •79.Частота столкновений в единицу времени, понятие физического вакуума.
- •80.Явления переноса: теплопроводность.
- •81.Явления переноса: диффузия.
- •82.Явления переноса: вязкое трение.
- •83.Молекулярная теория явлений переноса: вывод уравнения переноса параметра .
- •84.Молекулярная теория явлений переноса: вывод уравнения коэффициента диффузии.
- •85.Молекулярная теория явлений переноса: вывод уравнения коэффициента теплопроводности.
- •86.Молекулярная теория явлений переноса: вывод уравнения коэффициента вязкости.
- •87.Силы и потенциальная энергия межмолекулярного взаимодействия.
- •88.Вывод уравнения Ван-дер-Ваальса.
- •89.Изотермы Ван-дер-Ваальса.
- •Часть 7—6 — отвечает газообразному состоянию;
- •Часть 2—1 — жидкому;
- •Часть 6—2, — горизонтальный участок, соответствующий равновесию жидкой и газообразной фаз вещества.
- •90.Фазовые переходы. Уравнения Клайперона-Клаузиуса.
- •91.Поверхностное натяжение в жидкостях.
- •92.Смачивание
- •93.Капиллярные явления. Формула Лапласса.
- •94.Строение твердых тел. Классификация элементарных ячеек.
- •95.Дефекты кристаллических решеток.
- •96.Температура. Температурные шкалы. Способы измерения.
77.Статистика Бозе-Эйнштейна (подсчет числа микросостояний, функция распределения).
Подсчет числа состояний в распределении Бозе-Эйнштейна. В модели Бозе-Эйнштейна в каждом квантовом состоянии может находиться произвольное число неразличимых между собой частиц. Как и при выводе распределения Ферми-Дирака, используем понятия энергетических уровней и возможных состояний в пределах отдельного уровня.
При этом условии
общее число различных распределений
частиц по
местам выражается формулой
.
Тогда общее число микросостояний на
всех энергетических уровнях:
-
число микросостояний для модели
Бозе-Эйнштейна.
Рассуждая так же, как и при выводе распределения Ферми-Дирака получим формулу:
- распределения
Бозе-Эйнштейна.
Эта формула переходит в распределение Максвелла-Больцмана в случае, когда среднее число частиц, приходящихся на одно квантовое состояние, достаточно мало.
Конкуренция между частицами при занятии состояний в статистике Ферми-Дирака чрезвычайно интенсивна, поскольку занятое какой-либо частицей состояние запрещено для других частиц. Можно в определенном смысле говорить, что частица, занимающая некоторое состояние, отталкивает от этого состояния другие частицы, как бы удерживает из на некотором удалении от этого состояния. Конкуренция между частицами ослабевает, когда число допустимых для них состояний много больше числа частиц.
В статистике Бозе-Эйнштейна такая конкуренция отсутствует: частица может занять некоторое состояние независимо от того. Занято ли оно другими частицами или свободно. Ясно, что если конкуренция в статистике Ферми-Дирака ослабевает, то ее результаты должны приближаться к результатам статистике Бозе-Эйнштейна. Это наблюдается при малом среднем числе частиц, приходящихся на одно квантовое состояние. В этом случае распределения Ферми-Дирака и Бозе-Эйнштейна совпадают и сводятся к распределению Максвелла-Больцмана.
78.Длина свободного пробега.
Молекулы газов
сталкиваются друг с другом. Между двумя
последовательными соударениями молекула
проходит путь
,
который называют длиной свободного
пробега. Естественно, что смысл имеет
только средняя длина свободного
пробега
,
которую в дальнейшем будем называть
просто длиной свободного пробега.
Припишем молекуле некоторый эффективный
диаметр
,
т.е. наименьшее расстояние, на которое
сближаются молекулы при соударении. Он
зависит от скорости, температуры, но мы
пренебрежем этим.
Ч
исло
соударений в цилиндре длиной
и поперечным сечением
должно быть равно
.
Т
еперь
уточним эту формулу. Мы считали другие
молекулы неподвижными, но они тоже
движутся. Надо перейти к относительной
скорости, точнее взять среднюю
арифметическую скорость движения
молекул и перейти в их систему покоя (в
систему центра масс).
,
,
;
,
,
.
Переход к
относительной скорости, внесет в
полученную формулу множитель
:
- средняя длина
свободного пробега.
79.Частота столкновений в единицу времени, понятие физического вакуума.
- средняя длина свободного пробега.
Среднее число
столкновений в единицу времени
получим, если учтем, что молекула за
единицу времени будет двигаться в
ломаном цилиндре длиной
,
разделив эту длину на среднюю длину
свободного пробега, узнаем среднее
число столкновений в единицу времени:
.
Для
нормальных условий в воздухе
,
;
,
.
Понятие физического
вакуума формулируется на языке длины
свободного пробега. Вакуумом
называется состояние газа, при котором
длина свободного пробега молекул
примерно равна размерам
сосуда.
Низкий вакуум -
Средний вакуум
-
Высокий вакуум
-
(
мм. рт. ст.)
Сверхвысокий
вакуум -
(ультраразреженный газ
мм. рт. ст)