
- •Мощности в цепях переменного тока
- •Элемент r (резистор)
- •Элемент l (индуктивность)
- •Элемент с (ёмкость)
- •Цепь переменного тока с индуктивностью
- •Измерение активной мощности в трехфазных цепях
- •Измерение активной мощности двумя ваттметрами
- •Емкость в цепи переменного тока
- •Мощность трехфазного тока
- •Резонанс напряжений
- •Разветвленные цепи переменного тока
- •Резонанс токов
- •Магнитный поток
- •Электродвижущая сила
- •Принцип действия и устройство трансформатора
- •Опыт холостого хода и короткого замыкания
- •Трехфазные трансформаторы
- •Получение вращающегося магнитного поля
- •Трехфазный асинхронный электродвигатель с короткозамкнутым ротором
- •Принцип действия
- •Реакция якоря синхронного генератора
- •Синхронные двигатели
- •Способы пуска синхронных двигателей
Опыт холостого хода и короткого замыкания
Для испытания трансформатора служит опыт холостого хода и опыт короткого замыкания.
При опыте холостого хода трансформатора (рис. 103) его вторичная обмотка разомкнута и тока в этой обмотке нет (/2—0).
Если первичную обмотку трансформатора включить в сеть источника электрической энергии переменного тока, то в этой обмотке будет протекать ток холостого хода I0, который представляет собой малую величину по сравнению с номинальным током трансформатора. В трансформаторах больших мощностей ток холостого хода может достигать значений порядка 5— 10% номинального тока. В трансформаторах малых мощностей этот ток достигает значения 25—30% номинального тока. Ток холостого хода I0 создает магнитный поток в магнитопроводе трансформатора. Для возбуждения магнитного потока трансформатор потребляет реактивную мощность из сети. Что же касается активной мощности, потребляемой трансформатором при холостом ходе, то она расходуется на покрытие потерь мощности в магнитопроводе, обусловленных гистерезисом и вихревыми токами.
Так как реактивная мощность при холостом ходе трансформатора значительно больше активной мощности, то коэффициент мощности cos φ его весьма мал и обычно равен 0,2-0,3.
По данным опыта холостого хода трансформатора определяется сила тока холостого хода I0, потери в стали сердечника Рст и коэффициент трансформации К.
Силу тока холостого хода I0 измеряет амперметр, включенный в цепь первичной обмотки трансформатора.
При испытании трехфазного трансформатора определяется фазный ток холостого хода.
О потерях в стали сердечника Pст судят по показаниям ваттметра, включенного в цепь первичной обмотки трансформатора.
Коэффициент трансформации трансформатора равен отношению показаний вольтметров, включенных в цепь первичной и вторичной обмоток.
При коротком замыкании вторичной обмотки сопротивление трансформатора очень мало и ток короткого замыкания во много раз больше номинального. Такой большой ток вызывает сильный нагрев обмоток трансформатора и приводит к выходу его из строя. Поэтому трансформаторы снабжаются защитой, отключающей его при коротких замыканиях.
При опыте короткого замыкания (рис. 104) вторичная обмотка трансформатора замкнута накоротко, т. е. напряжение на зажимах вторичной обмотки равно нулю. Первичная обмотка включается в сеть с таким пониженным напряжением, при котором токи в обмотках равны номинальным. Такое пониженное напряжение называется напряжением короткого замыкания и обычно равно 5,5% от номинального значения.
По данным опыта короткого замыкания определяется напряжение короткого замыкания uк %, его активная uа % и реактивная ux % составляющие, потери на нагревание обмоток трансформатораPобм при номинальной нагрузке и активное, реактивное и полное сопротивления трансформатора при коротком замыкании rk, xk и zk.
Потери в обмотках указываются ваттметром. Активное, реактивное и полное сопротивления короткого замыкания трансформатора определяются следующими выражениями:
где Uk, I и Pk- напряжение, сила тока, мощность, указываемые измерительными приборами, включенными в цепь первичной обмотки трансформатора.
При испытании трехфазного трансформатора следует в приведенных выше выражениях подставить фазные значения напряжения, тока и мощности.
Напряжение короткого замыкания и его активная и реактивная составляющие равны:
где Uн и Iн — номинальные напряжения и сила тока вторичной (первичной) обмотки трансформатора.
ВНЕШНАЯ ХАРАКТЕРИСТИКА. ПОТЕРИ И К.П.Д. ТРАНСФОРМАТОРА
Увеличение нагрузки трансформатора сопровождается увеличением токов I2 и I1, что приводит к увеличению падения напряжения в обмотках трансформатора. Поэтому с увеличением нагрузки
вторичное напряжение изменяется. В зависимости от характера нагрузки трансформатора изменение вторичного напряжения может быть различным. Если принять напряжение U1 неизменным, то зависимость вторичного напряжения U2 от величины нагрузки I2, т. е.
называется внешней характеристикой трансформатора.
Внешняя характеристика для случая с активно-индуктивной нагрузкой дана на рис. 196.
При испытаниях трансформаторов проводят опыты холостого хода и короткого замыкания. На рис. 197 дана схема опыта холостого хода. В этом случае вольтметры показывают напряжения первичной и вторичной обмотки U1 и U2. Амперметр, включенный в цепь первичной обмотки, измеряет ток холостого хода — I0.
Ваттметр измеряет мощность потерь холостого хода — Р0. По данным опыта холостого хода определяют коэффициент трансформации k, коэффициент мощности cos φ0 и другие данные.
Мощность, подводимая к трансформатору при холостом ходе, идет на покрытие потерь холостого хода. Так как ток холостого хода I0 мал, то потерями мощности на нагрев первичной обмотки, равными I10 r1, можно
пренебречь и считать, что мощность, потребляемая трансформатором при холостом ходе, идет на покрытие потерь в стали сердечника (потери на гистерезис и вихревые токи).
Если подключить первичную обмотку трансформатора к напряжению сети, а зажимы его вторичной обмотки замкнуть накоротко, то это приведет к опасному явлению короткого замыкания трансформатора. Токи короткого замыкания выделяют большое количество тепла в обмотках, что может привести к повреждению изоляции обмоток, Механические усилия, возникающие в обмотках трансформатора при коротких замыканиях, могут иногда привести к разрушению обмоток.
Если же зажимы вторичной обмотки трансформатора замкнуть накоротко, а первичную обмотку подключить к пониженному напряжению, чтобы ток короткого замыкания I2К был бы равенноминальному току I2Н, то при этом с трансформатором ничего опасного не произойдет. Этот опыт называется опытом короткого замыкания. Напряжение, под которое включается первичная обмотка трансформатора при опыте короткого замыкания, составляет несколько процентов от номинального напряжения этой обмотки и называется напряжением короткого замыкания; обозначается UK.
Силовые трансформаторы, изготовляемые в СССР, имеют напряжение короткого замыкания, равное 5—10%.
На рис. 198 дана схема опыта короткого замыкания. Вольтметр, включенный в цепь первичной обмотки, показывает напряжение короткого замыкания UK. Амперметры измеряют номинальные
токи первичной и вторичной обмоток I1н и I2н. Ваттметр измеряет мощность потерь при коротком замыкании Рк.
Выше было сказано, что магнитный поток трансформатора пропорционален величине напряжения первичной обмотки трансформатора.
При опыте короткого замыкания магнитный поток в сердечнике мал, так как напряжение короткого замы-
кания во много раз меньше номинального напряжения. Поэтому потерями в стали в этом случае можно пренебречь и считать, что мощность при этом опыте идет на покрытие потерь в обмоткахтрансформатора (I12 r21 + I12r2).
По данным опыта короткого замыкания определяют коэффициент мощности при коротком замыкании
cos φK, активные и реактивные сопротивления обмоток — r1, x1, r12 и х12.
В трансформаторе имеют место потери. Они слагаются из потерь в обмотках и потерь в стали сердечника.
Потери в обмотках трансформатора называются также электрическими потерями Рэ. Они пропорциональны квадрату тока. Электрические потери определяют по показаниям ваттметра из опыта короткого замыкания. Потери в стали, называемые также магнитными потерями Рм, зависят от частоты сети и величины магнитной индукции. Магнитные потери определяют по показаниям ваттметра из опыта холостого хода трансформатора.
Общие потери ∆Р равны сумме электрических Рэ и магнитных Pм потерь:
Коэффициентом полезного действия т р а н сформатора называется отношение активной мощности вторичной обмотки Р2 к активной мощности первичной обмотки Р1:
К. п. д. трансформатора высок и может достигать 98—99%.