- •1. Предмет и задачи химии. Значение химии.
- •2. Строение атома. Модели атома (Морозова, Резерфорда, Бора). Теория бора. Уравнение Планка. Принцип неопределенности Гейзенберга. Волновая функция. Уравнение Шредингера.
- •3. Квантово-механические представления о строении атома. Квантовые числа и их физический смысл.
- •4. Распределение электронов в многоэлектронном атоме. Принцип Паули. Правило Гунда. Порядок заполнения электронных подуровней.
- •6. Ковалентная связь. Свойства ковалентной связи: прочность, полярность, насыщаемость, направленность, гибридизация, кратность.
- •7. Обменный и донорно-акцепторный механизм образования ковалентной связи.
- •9. Метод молекулярных орбиталей (ммо) и мтод валентных связей (мвс). Сравнительная характеристика ммо и мвс.
- •10. Ионная связь и ее свойства.
- •11. Водородная связь и межмолекулярные взаимодействия (индукционное, дисперсное, ориентационное).
- •12. Комплексные соединения: строение, характер связи, диссоциация. Классификация комплексных соединений.
- •13. Химическая термодинамика. Внутренняя энергия. Первый закон термодинамики.
- •14. Энтальпия образования вещества. Закон Гесса и его применения.
- •15. Энтропия как мера термодинамической необратимости процесса. Второй закон термодинамики.
- •16. Свободная энергия Гиббса. Самопроизвольность протекания р-и.
- •26. Сильные электролиты; активность, коэф-нт активности,ионная сила.
- •31. Строение мицеллы коллоидов. Оптические и электрические свойства.
- •32. Окислительно-восстановительные реакции (овр). Ионно-электронный метод уравнивания овр. Термодинамическая вероятность протекания овр.
- •33. Электродный потенциал. Стандартный электродный потенциал. Водородный потенциал. Уравнение Нернста.
- •34. Гальванический элемент: устройства, протекающие процессы на аноде и катоде.
- •35. Электролиз. Законы Фарадея. Электрохимический эквивалент. Выход по току.
- •36. Электролиз расплавов и растворов на растворимых и нерастворимых электродах. Последовательность разряда ионов при электролизе на аноде и катоде.
- •37. Поляризация, ее причины
- •40. Получение металлов. Применение.
- •41. Коррозия: химическая и электрохимическая коррозия. Виду коррозийных разрушении.
- •Электрохимическая коррозия
- •49 Вопрос.
- •59. Разрешение полимеров. Механические свойства полимеров.
- •60) Термопласты и термореактопласты.
49 Вопрос.
По характеру физико-химического взаимодействия между матрицей и арматурой различают три класса композитов:
1.компоненты не растворимые друг в друге и не образуют соединений:Al-Al2O3, Cu-W, Mg-B.
2. эвтектики или твердые растворы: Nb-W, Ni-C.
3. Химические соединения : Al-SiO2, Ni-Al2O3, Ni-B.
50)Термодинамическая совместимость: химический потенциал. Кинетическая совместимость.
((Термодинамическая совместимость компонентов композита определяется способностью их находиться в состоянии химического равновесия как при получения, так и при эксплуатации. Движущая сила взаимодействия между компонентами- различие химических потенциалов:
где , -число компонентов 1-го и остальных компонентов; T-температура; P-давление.
Величина химического потенциала зависит от доли дефектов К:
Кинетическая совместимость- способность композита находиться в состоянии метастабильного равновесия, контролируемого адсорбцией, скоростью диффузии, химическими реакциями))
Термодинамическая совместимость-это способность матрицы и армирующих элементов находиться в состоянии термодинамического равновесия неограниченное время при температурах получения и эксплуатации.
Химический потенциал- понятие, используемое для описания термодинамического равновесия в многокомпонентных системах. Обычно химический потенциал компонента системы вычисляют как частную производную гиббсовой энергии по числу частиц (или молей) этого компонента при постоянной температуре, давлении и массах других компонентов. В равновесной гетерогенной системе химические потенциалы каждого из компонентов во всех фазах, составляющих систему, равны (условие фазового равновесия). Для любой химической реакции сумма произведений химического потенциала всех участвующих в реакции веществ на их стехиометрический коэффициент равна нулю (условие химического равновесия).
Кинетическую совместимость можно рассматривать, как способность компонентов КМ находиться в состоянии метастабильного равновесия, контролируемого такими факторами, как адсорбция, скорость химической реакции и т.п. Термодинамически несовместимые составляющие КМ в определенных температурно-временных интервалах могут быть совместимы кинетически и достаточно надежно работать в конструкциях. Наряду с химической важно обеспечить и механическую совместимость компонентов КМ, т.е. соответствие их упругих постоянных и показателей пластичности, позволяющее достичь прочности связи, необходимой для эффективной передачи напряжений через поверхность раздела.
Кинетическая совместимость определяется коэффициентом диффузии, и скоростью роста промежуточных фаз, а так же структурным состоянием компонентов и временем воздействия высокой температуры.
53. Полимеры и олигомеры. Виды полимеров: природные и синтетические.
Полимер – вещество с большой молекулярной массой, молекулы которого (макромолекулы) состоят из большого числа повторяющихся группировок (мономерных звеньев).
Пример: Полиэтилен [-CH2CH2-]; мономерное звено -CH2CH2-
Олигомер – молекула в виде цепочки из небольшого числа одинаковых составных звеньев.
Физические свойства олигомеров изменяется при добавлении или удалении одного или нескольких составных звеньев в его молекуле.
Человек давно использует природные полимерные материалы в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы.
Синтетические полимеры — это ненатуральные полимерные материалы, произведенные для замены природным материалам.
Промышленное изготовление искусственных полимеров осуществляется несколькими способами — путем переделки натуральных органических полимеров в искусственные полимерные материалы, а также способом «добывания» искусственных полимеров из органических низкомолекулярных соединений.
Среди синтетических полимеров есть отдельная группа, включающая каучуки и каучукоподобные полимеры. Эти материалы характеризуются удивительной деформативностью и высокоэластичными свойствами, из-за чего им и дали название эластомер.
Синтетические полимеры формируются благодаря полимеризации и поликонденсации. Карбоцепные полимеры зачастую синтезируются полимеризацией мономеров с одним или более кратным углеродными связями или мономеров, держащих в себе неустойчивые карбоциклические группировки.
Первый материал был изготовлен из физической модифицированной целлюлозы еще в начале двадцатого века и до сегодняшнего времени из этого же материала производят волокна, пленки, загустители и лаки. Он приобрел название целлулоид, который всем известен как целлюлоза
57) Форма и структура молекул полимеров.
Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми.
Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации.
Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров может быть вызвано при росте боковых цепей, передачей цепи на макромолекулу, физическими воздействиями облучение на смесь полимера и мономеров.
Сетчатые полимеры образуются в результате сшивки цепей при вулканизации.
Форма макромолекул влияет на структуру и свойства полимеров.
В линейных и разветвленных макромолекулах, атомы или группы атомов могут вращаться вокруг ординарных связей, постоянно изменяя свою пространственную форму. Это свойство обеспечивает гибкость макромолекул, и они могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластичное состояние, ониобладают термопластическими свойствами размягчаются при нагревании и затвердевают при охлаждении без химических превращений.
При разветвлении эластические термопластические свойства становятся менее выраженными, а при образовании сетчатой структуры термопластичность теряется. Уменьшение длины цепей ведет к уменьшению эластичности полимеров, например, при переходе от каучука к эбониту.
Линейные полимеры могут иметь регулярную и нерегулярную структуру.
В полимерах регулярной структуры отдельные звенья цепи повторяются в определенной последовательности и располагаются в определенном порядке в пространстве, их называютстереорегулярными. Стереорегулярность изменяет тепловые и механические свойства полимеров.
Полипропилен нерегулярной структуры.
Полипропилен регулярной структуры.
58)различия свойств растворов полимеров и низкомолекулярных веществ.( в интернете было только это , а в книгах даже этого не было)
РАСТВОРЫ ПОЛИМЕРОВ, обладают рядом особенностей по сравнению с растворами низкомол. веществ из-за свойств макромолекул: больших размеров, широкого диапазона гибкости (жесткости), большого набора конформаций, способности к конформац. перестройкам при изменении температуры, растворителя и т.п.