- •Эндоцитоз.
- •Экзоцитоз.
- •Диацитоз.
- •Накопительную
- •Секреторную
- •Агрегационную
- •8) Пероксисомы. Строение и функции.
- •9) Митохондрии. Энергетический обмен в клетке.
- •1. Сократительного белка актина
- •2. Миозина
- •11) Ядро клетки. Строение и функции.
- •Хроматин.
- •Ядерный сок (кариолимфа).
- •Ядрышко.
- •Образование связей между основаниями
- •Химические модификации оснований
- •Повреждение днк
- •Суперскрученность
- •Структуры на концах хромосом
- •Биологические функции
- •Химический состав и модификации мономеров
- •Структура
- •Сравнение с днк
- •]Типы рнк
- •Участвующие в трансляции
- •Участвующие в регуляции генов
- •В процессинге рнк
- •[Править]Ретровирусы и ретротранспозоны
- •Гипотеза рнк-мира
- •Роль в организме
- •Пути синтеза
- •15) Строение хромосом. Кариотип человека.
- •Первичная перетяжка
- •Вторичные перетяжки
- •Типы строения хромосом
- •Спутники (сателлиты)
- •Зона ядрышка
- •Хромонема
- •Хромосомные перестройки
- •Гигантские хромосомы
- •Политенные хромосомы
- •Хромосомы типа ламповых щёток
- •Бактериальные хромосомы
- •Хромосомы человека
- •Определение кариотипа
- •Процедура определения кариотипа
- •Классический и спектральный кариотипы
- •Анализ кариотипов
- •Аномальные кариотипы и хромосомные болезни
- •Уровни организации
- •Окружение белков
- •Образование и поддержание структуры белков в живых организмах
- •Синтез белков Химический синтез
- •Биосинтез белков
- •Универсальный способ: рибосомный синтез
- •Нерибосомный синтез
- •19) Митоз и его биологическое значение. Митоз, его фазы, биологическое значение
- •Нетипичные формы митоза
- •20) Апоптоз
- •Причины апоптоза
- •Патогенез апоптоза:
- •Морфологические проявления апоптоза
- •Сжатие клетки
- •Конденсация хроматина
- •Формирование апоптотических телец
- •Фагоцитоз
- •Значение апоптоза
- •21) Молекулярные основы канцерогенеза
1. Сократительного белка актина
2. Миозина
Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл.
В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам.
Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток.
Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и -тубулина.
Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты, которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов.
В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек.
Наиболее мощным центром организации микротрубочек являются центриоли. В инициации полимеризации микротрубочек играет белок - -фактор.
Клеточные включения
Включения — это непостоянные структуры клетки, которые появляются в ней и исчезают в процессе метаболизма. Различают трофические, секреторные, экскреторные и пигментные включения.
Группа трофических включений объединяет углеводные, липидные и белковые включения. Наиболее распространенным представителем углеводных включений является гликоген — полимер глюкозы. На светооптическом уровне наблюдать включения гликогена можно при использовании гистохимической ШИК-реакции. В электронном микроскопе гликоген выявляется как осмиофильные гранулы, которые в клетках, где гликогена много (гепатоцитах), сливаются в крупные конгломераты — глыбки.
Липидными включениями наиболее богаты клетки жировой ткани — липоциты, резервирующие запасы жира для нужд всего организма, а также стероидпродуцирующие эндокринные клетки, использующие липид холестерин для синтеза своих гормонов. На ультрамикроскопическом уровне липидные включения имеют правильную округлую форму и в зависимости от химического состава характеризуются высокой, средней или низкой электронной плотностью.
Белковые включения, например, вителлин в яйцеклетках, накапливается в цитоплазме в виде гранул.
Секреторные включения представляют собой разнообразную группу. Секреторные включения синтезируются в клетках и выделяются (секретируются) в просветы протоков (клетки экзокринных желез), в межклеточную среду (гормоны, нейромедиаторы, факторы роста и др.), кровь, лимфу, межклеточные пространства (гормоны). На ультрамикроскопическом уровне секреторные включения имеют вид мембранных пузырьков, содержащих вещества разной плотности и интенсивности окраски, что зависит от их химического состава.
Экскреторные включения — это, как правило, продукты метаболизма клетки, от которых она должна освободиться. К экскреторным включениям относятся также инородные включения — случайно, либо преднамеренно (при фагоцитозе бактерий, например,) попавшие в клетку субстраты. Такие включения клетка лизирует с помощью своей лизосомальной системы, а оставшиеся частицы выводит (экскретирует ) во внешнюю среду. В более редких случаях попавшие в клетку агенты остаются неизменными и могут не подвергнуться экскреции — такие включения более правильно именовать чужеродными (хотя чужеродными для клетки являются и включения, которые она лизирует).
Пигментные включения хорошо выявляются как на светооптическом, так и на ультрамикроскопическом уровнях. Очень характерный вид они имеют на электронных микрофотографиях — в виде осмиофильных структур разных размеров и формы. Данная группа включений характерна для пигментоцитов. Пигментоциты, присутствуя в дерме кожи, защищают организм от глубокого проникновения опасного для него ультрафиолетового излучения, в радужке, сосудистой оболочке и сетчатке глаза пигментоциты регулируют поток света на фоторецепторные элементы глаза и предохраняют их от перераздражения светом. В процессе старения очень многие соматические клетки накапливают пигмент липофусцин, по присутствию которого можно судить о возрасте клетки. В эритроцитах и симпластах скелетных мышечных волокон присутствуют соответственно гемоглобин или миоглобин — пигменты-переносчики кислорода и углекислоты.
