- •Эндоцитоз.
- •Экзоцитоз.
- •Диацитоз.
- •Накопительную
- •Секреторную
- •Агрегационную
- •8) Пероксисомы. Строение и функции.
- •9) Митохондрии. Энергетический обмен в клетке.
- •1. Сократительного белка актина
- •2. Миозина
- •11) Ядро клетки. Строение и функции.
- •Хроматин.
- •Ядерный сок (кариолимфа).
- •Ядрышко.
- •Образование связей между основаниями
- •Химические модификации оснований
- •Повреждение днк
- •Суперскрученность
- •Структуры на концах хромосом
- •Биологические функции
- •Химический состав и модификации мономеров
- •Структура
- •Сравнение с днк
- •]Типы рнк
- •Участвующие в трансляции
- •Участвующие в регуляции генов
- •В процессинге рнк
- •[Править]Ретровирусы и ретротранспозоны
- •Гипотеза рнк-мира
- •Роль в организме
- •Пути синтеза
- •15) Строение хромосом. Кариотип человека.
- •Первичная перетяжка
- •Вторичные перетяжки
- •Типы строения хромосом
- •Спутники (сателлиты)
- •Зона ядрышка
- •Хромонема
- •Хромосомные перестройки
- •Гигантские хромосомы
- •Политенные хромосомы
- •Хромосомы типа ламповых щёток
- •Бактериальные хромосомы
- •Хромосомы человека
- •Определение кариотипа
- •Процедура определения кариотипа
- •Классический и спектральный кариотипы
- •Анализ кариотипов
- •Аномальные кариотипы и хромосомные болезни
- •Уровни организации
- •Окружение белков
- •Образование и поддержание структуры белков в живых организмах
- •Синтез белков Химический синтез
- •Биосинтез белков
- •Универсальный способ: рибосомный синтез
- •Нерибосомный синтез
- •19) Митоз и его биологическое значение. Митоз, его фазы, биологическое значение
- •Нетипичные формы митоза
- •20) Апоптоз
- •Причины апоптоза
- •Патогенез апоптоза:
- •Морфологические проявления апоптоза
- •Сжатие клетки
- •Конденсация хроматина
- •Формирование апоптотических телец
- •Фагоцитоз
- •Значение апоптоза
- •21) Молекулярные основы канцерогенеза
1)ПАК. Строение. Поверхностный аппарат клетки – является универсальной субсистемой, имеется у всех клеток. Поверхностный аппарат клетки определяет границу между цитоплазмой и внеклеточной средой, регулирует взаимодействие клетки с внешней средой.
В составе поверхностного аппарата клетки выделяют 3 компонента:
1. Плазматическую мембрану, или плазмолемму
2. Надмембранный комплекс, или гликокаликс
3. Субмембранный комплекс или субмембранный опорно-сократительный аппарат.
Плазмолемма – является структурной и функциональной основой поверхностного аппарата клетки и представляет собой сферически замкнутую биомембрану. Структура плазмолеммы соответствует жидкостно-мозаичной модели мембран.
Надмембранный комплекс, или гликокаликс является наружней частью поверхностного аппарата клетки, располагаясь над плазмолеммой.
В состав надмембранного комплекса включают:
1. Углеводные части гликолипидов и гликопротеидов
2. Периферические мембранные белки, расположенные на наружней части билипидного слоя
3. Интегральные и полуинтегральные белки, имеющие наружную зону, выступающую над билипидном слоем.
4. Специфические углеводы, не связанные химически с компонентами мембраны, локализованные над билипидном слоем.
5. Субмембранный комплекс или субмембранный опорно-сократительный аппарат – располагается под плазмолеммой, с внутренней стороны поверхностного аппарата клетки. В состав субмембранного опорно-сократительного аппарата выделяют периферическую гиалоплазму и опорно-сократительную систему.
Периферическая гиалоплазма – является специализированной частью цитоплазмы, расположенной под плазмолеммой. Это жидкое высоко дифференцированное гетерогенное вещество, которое содержит в растворе разнообразные низкомолекулярные и высокомолекулярные молекулы. Периферическая гиалоплазма фактически является микросредой, в которой протекают общие и специфические процессы метаболизма. Она обеспечивает реализацию многих функций поверхностного аппарата клетки. В периферической гиалоплазме располагается второй компонент субмембранного опорно-сократительного аппарата - опорно-сократительная система.
Опорно-сократительная система состоит из:
Микрофибрилл, или микрофиламентов
Скелетных фибрилл, или промежуточных филаментов
Микротрубочек
Микрофиблиллы - нитивидные структуры, состоящие из:
1. Сократительного белка актина
2. Миозина
Молекулы глобулярного актина образуют протофибриллы, формируют двойную спираль, к которой присоединяются белки. Для полимеризации необходимы: АТФ, высокая концентрация ионов Mg и белок филамин. Деполяризация актиновых миотфибрилл происходит при участии белка профилина. Процессы полимеризации и деполяризации происходят параллельно на противоположных концах миофибрилл.
В опорно-сократительной системе имеются миозиновые микрофибриллы. Особенностями их строения является наличие “головок”, способных расщеплять АТФ. В ходе этого процесса головка присоединяются к актиновым микрофиламентам по отношению к миозиновым микрофилиментам.
Скелетные фибриллы - образуются путем полимеризации отдельных белковых молекул. Скелетные фибриллы разного типа клеток состоят из разных белков. В эпителиальных клетках скелетные фибриллы формируются белком прекератином и называются тонофибриллами. Все скелетные фибриллы устойчивы к физическим и физическим агентам. Они выполняют опорную функцию и являются элементом цитоскелета. Число и длина скелетных фибрилл регулируется клеточными механизмами, изменения которых может вызывать аномалии функции клеток.
Микротрубочки - занимают наиболее отдаленное от плазмолеммы положение. Стенки микротрубочек сформированы белками тубулинами. Структурной единицей микротрубочек являются димеры, состоящие из молекул -тубулина и -тубулина.
Микротрубочки включают и другие виды белков, которые называются МАР-белки. Эти белки обеспечивают эффективное функционирование микротрубочек. Формирование микротрубочек основано на процессе полимеризации тубулиновых димеров. Сначала образуются тубулиновые нити – протофиламенты, которые взаимодействуют между собой, образуя стенку микротрубочки. Как правило стенка микротрубочки состоит из 13 протофиламентов.
В клетке полимеризация микротрубочек происходит путем самосборки при определенных условиях. Таким условием является наличие ГТФ (аналог АТФ), ионов магния, отсутствие кальция. Формирование новых микротрубочек осуществляется в центрах организации микротрубочек.
Наиболее мощным центром организации микротрубочек являются центриоли. В инициации полимеризации микротрубочек играет белок - -фактор.
2)Барьерно-транспортная функция ПАК Барьерная функция. Для клеток и субклеточных частиц М.б. служат механическим барьером, отделяющим их от внешнего пространства. Функционирование клетки часто сопряжено с наличием значительных механических градиентов на ее поверхности преимущественно вследствие осмотического и гидростатического давления. Основную нагрузку в этом случае несет клеточная стенка, главными структурными элементами которой у высших растений являются целлюлоза, пектин и экстепин, а у бактерий — муреин (сложный полисахарид-пептид). В клетках животных необходимость в жесткой оболочке отсутствует. Некоторую жесткость этим клеткам придают особые белковые структуры цитоплазмы, примыкающие к внутренней поверхности плазматической мембраны.
Транспорт молекул через мембраны:
Обмен веществ между клеткой и средой определяется транспортной функцией ПАК. В своей деятельности клетка использует несколько видов транспорта молекул и веществ через ПАК:
Свободный транспорт, или простая диффузия.
Пассивный транспорт, или облегченная диффузия
Активный транспорт
Транспорт в мембранной упаковке или цитоз.
Свободный транспорт – осуществляется только при наличии электрического градиента по обе стороны мембраны. Этот градиент существует только при разности концентрации и\или зарядов транспортируемых молекул.
Величина градиента определяет направление и скорость свободного транспорта. Такое направление транспорта называют транспортом по градиенту концентрации. При этом скорость свободного транспорта прямолинейна величине градиента. Транспорт по градиенту концентрации приводит к уменьшению разности концентраций и постепенному снижению скорости свободного транспорта.
Биологическая роль свободного транспорта ограничена. Это определяется его недостаточной избирательностью. Через билипидный слой могут проходить любые гидрофобные молекулы. Большинство биологически активных молекул являются гидрофильными, поэтому их свободный транспорт через билипидный слой затруднен.
Пассивный транспорт – облегченная диффузия – также осуществляется только по градиенту концентраций и без затрат АТФ. Скорость пассивного транспорта намного больше, чем свободного. При увеличении разности концентраций наступает момент, когда скорость становится постоянной. Транспорт осуществляется специальными молекулами – переносчиками. С их помощью через мембрану по градиенту концентрации транспортируются крупные гидрофильные молекулы (сахара, аминокислоты). В ПАК имеются пассивные переносчики для различных ионов (К+, Na+, Ca2+, Cl-, HCO3-).
Особенностью пассивных переносчиков является их высокая специфичность (избирательность) по отношению к транспортируемым молекулам. Вторая особенность – высокая скорость транспорта, которая может составлять 104 молекул в секунду и более. Клетка может регулировать количественный и качественный набор переносчиков в своем ПАК. Это позволяет клетке дифференцироваться и реагировать на изменения условий.
Механизм действия переносчиков основан на их способности образовывать каналы, специфические для определенных молекул. Например: пассивный переносчик глюкозы.
Изменять параметры пассивного транспорта в клетке можно с помощью лекарственных препаратов, антибиотиков. Антибиотики выступают в роли пассивных переносчиков. У эукариотичекких клетках нарушение пассивного транспорта могут вызывать некоторые токсины и яды.
Активный транспорт – характеризуется переносом молекул против градиента концентрации, т.е. из области с низкой концентрацией молекул в область с более высокой концентрацией молекул. Для этого необходимы затраты АТФ. При отсутствии АТФ этот вид транспорта прекращается или не начинается. Работу по переносу молекул против градиента концентрации осуществляют специальные молекулы – переносчики. Такие молекулы получили название “насосы”, или “помпы”. Многие активные переносчики обладают АТФ-азной активностью: способны расщеплять АТФ и получать энергию для своей работы.
Активный транспорт ионов необходим клеткам для создания соответствующих градиентов ионов. В нервных клетках градиенты ионов (K+, Na+) необходимы для возникновения и проведения нервных импульсов. Энергию градиента ионов клетка может использовать для активного транспорта других молекул. Такой вид транспорта получил название вторичного активного транспорта. Вторичный активный транспорт также осуществляется с помощью переносчика. Но такой переносчик транспортирует молекулы не одного вещества, а двух или более. Пример: переносчик глюкозы в эпителиальных клетках почечных канальцев. Переносчик способен транспортировать ионов Na+ по градиенту концентрации и молекулы глюкозы против градиента концентрации – осуществлять сопряженный транспорт молекул.
С помощью Na+-насоса клетка создает градиент с более высокой концентрацией Na+ вне клетки. В результате Na+ с сопряженным переносчиком, активирует его, открывает канал глюкозы снаружи и Na+ попадает в клетку вместе с молекулой глюкозы. Затем натрий снова выкачивается наружу. Градиент натрия все время сохраняется и обеспечивает вторичный транспорт глюкозы.
Сопряженный транспорт, сопровождается движением обоих молекул в одном направлении, называют симпортом. В ПАК обнаруживаются переносчики, способные транспортировать разные молекулу в разном направлении, т.е. осуществлять антипорт. Пример: К+-Na+-насос.
Цитоз
Цитоз или транспорт в мембранной упаковке используется клеткой для транспорта крупных молекул или частиц различных веществ. Этот вид транспорта характеризуется тем, что транспортируемая частица оказывается окруженной (упакованной) мембранным пузырьком. Если цитоз происходит в клетку его называют эндоцитозом. Цитоз из клетки обозначают как экзоцитоз. Для некоторых клеток характерен цитоз, при котором частицы проходят через нее. Такой вид цитоза получил название диацитоз, или трансцитоз.
Эндоцитоз.
Частица “проходит” к ПАК и окружается участком плазмолеммы. В результате Частица оказывается в гиалоплазме в мембранном пузырьке, или эндосоме.
Различают 3 вида эндоцитоза:
1. Фагоцитоз. Для фагоцитоза характерен транспорт относительно крупных частиц. При этом виде эндоцитоза частица подходит к ПАК и взаимодействует со специальными компонентами кликокаликса (рецепторами). Это служит сигналом для активации субмембранного опорно-сократительного аппарата, который использует энергию АТФ. Вокруг частицы образуются выросты (выпячивания) участков плазмалеммы, которые окружают частицу со всех сторон. Этот процесс оканчивается образованием в периферической гиалоплазме эндесомы, которая называется фагосомой. Фагосома покрывается внутренней стороной плазмолеммы и оказывается в цитоплазме.
2. Макропиноцитоз – не имеет принципиальных отличий от фагоцитоза. Этому виду транспорта подвергаются более мелкие частицы. Образование эндосомы, которую называют пиносомой, осуществляется не выпячиванием, а впячиванием (углублением) участка плазмолеммы. После этого происходит рецепция частиц, а затем – образование и отрыв пиносомы. В этом участвует субмембранный опорно-сократительный аппарат и необходим АТФ. Некоторые вещества, например гормоны, поступают в клетку путем эндоцитоза с большей, чем обычно скоростью, за счет белков – клатринов.
3. Микропиноцитоз – сходен с макропиноцитозом, но при этом виде цитоза клетка не затрачивает АТФ. Микропиноцитоз является температуро-зависимым процессом. Он прекращается при понижении температуры. У животных микропиноцитоз встречается редко и используется как начальный этап диацитоза. При этом виде цитоза в клетки поступают наиболее мелкие частицы. У млекопитающих микропиноцитоз зарегистрирован к клетках эпителия капилляров и почечных канальцев.
4. Кроме обычного эндоцитоза возможен еще один вариант. При этом в ПАК проходит частица уже упакованная в мембранный пузырек. Затем происходит слияние участков мембран пузырька и плазмолеммы, и частица попадает в клетку. В этом случае частица оказывается в гиалоплазме без мембранной упаковки. Так в клетки животных транспортируется холестерин из плазмы крови
Экзоцитоз.
При экзоцитозе транспортируемое вещество упаковывается мембранным материалом в цитоплазме. Для этого используются мембраны эндоплазматической сети или комплекс Гольджи. С помощью микротрубочек этот мембранный пузырек или экзосома перемещается в периферическую гиалоплазму к плазмолемме. Мембраны экзосомы и ПАК контактируют и экзосома раскрывается. Под действием микрофибрилл и микротрубочек происходит растяжение пузырька и транспортируемое вещество оказывается за пределами клетки. При этом мембрана экзосомы становится частью плазмолеммы.Для экзоцитоза необходимы затраты АТФ. С помощью такого варианта экзоцитоза клетка может выводить во внеклеточную среду различные вещества.
Возможен еще один вариант экзоцитоза, который получил название обратного пиноцитоза. В этом случае транспортируемое вещество подходит к плазмолемме без мембранной упаковки и окружается участком плазмолеммы. Образовавшийся мембранный пузырек отрывается от плазмолеммы, и вещество оказывается за пределами клетки. Такой вид экзоцитоза встречается редко. С помощью обратного пиноцитоза секретируются капли молока из клеток молочных желез млекопитающих.