Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по физике.docx
Скачиваний:
34
Добавлен:
24.09.2019
Размер:
1.37 Mб
Скачать

4, Волны огибают препятствия, заходя в область геометрической тени, волна, попадающая на отверстие в препятствии, порождает за ним расходящуюся волну.

Явление отклонения от прямолинейного распространения называется дифракцией волн. Иногда дифракцией называют огибание волнами препятствий

5 условие min — asinφ=kλ (1), сохраняется и при дифракции на многих щелях. (1) — условие min, которое носит название главного или прежнего. Если разность фаз δ от 2-х соседних щелей равна нулю, то все векторы ai(в) (и Ai(в)) располагаются вдоль

одной линии. => ∆=dsinφ=0 (2) (т.к. δ=2π∆/λ). Т.о.

условие (2) — условие главного max (или нулевого) в точке р будет всякий раз и тогда, когда разность фаз между соседними колебаниями δ=+ - 2kπ, k=1,2,3. В этом случае все векторы ai(в) располагаются вдоль одной прямой. Т.о. условие + - 2kπ=2π∆/λ, dsinφ=+ - kλ (3), где k=0,1,2,есть условие главных max на экране. 

6,,  величина импульса есть: ,

где   — постоянная Планка, равная   — волновой вектор и   — его величина (волновое число);   — угловая частота. Волновой вектор   указывает направление движения фотона

7, В стационарном случае уравнение Шредингера имеет вид

 где Е, U - полная и потенциальная энергия, m - масса частицы.

8, Для того, чтобы покинуть поверхность твердого или жидкого тела электрону необходимо преодолеть потенциальный барьер, то есть совершить работу.Минимальная энергия, которую надо затратить, чтобы удалить электрон из твердого или жидкого вещества в вакуум (в состояние сравной нулю кинетической энергией), называется работой выхода электрона.

10, Метод Юнга. Источником света служит ярко освещенная щель S (рис. 245), от которой световая волна падает на две узкие равноудаленные щели S1 и S2,параллель­ные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников.

Интерференционная картина (область ВС) наблюдается на экране (Э), расположенном на некотором расстоянии параллельно S1 и S2. Как уже указывалось, Т. Юнгу принадлежит первое наблюдение явления интерференции.

2. Зеркала Френеля. Свет от источника S (рис. 246) падает расходящимся пучком на два плоских зеркала А1О и А2О, расположенных относительно друг друга под углом, лишь немного отличающимся от 180° (угол j мал). Используя правила построения изображения в плоских зеркалах, можно показать, что и источник, и его изображения S1 и S2 (угловое расстояние между которыми равно 2j) лежат на одной и той же окружности радиуса r с центром в О (точка соприкосновения зеркал).

Световые пучки, отразившиеся от обоих зеркал, можно считать выходящими из мнимых источников S1 и S2, являющихся мнимыми изображениями S в зеркалах. Мнимые источники S1 и S2 взаимно когерентны, и исходящие из них световые пучки, встречаясь друг с другом, интерферируют в области взаимного перекрывания (на рис. 246 она заштрихована). Можно показать, что максимальный угол расхождения перекрывающихся пучков не может быть больше 2j.Интерференционная карти­на наблюдается на экране (Э), защищенном от прямого попадания света заслон­кой (З).

3. Бипризма Френеля. Она состоит из двух одинаковых, сложенных основаниями призм с малыми преломляющими углами. Свет от источника S (рис. 247) преломляется в обеих призмах, в результате чего за бипризмой распространяются световые лучи, как бы исходящие из мнимых источников S1 и S2,являющихся когерентными. Таким образом, на поверхности экрана (в заштрихованной области) происходит наложение когерентных пучков и наблюдается интерференция.