
- •Клетка. Формы жизни.
- •Цитоплазматическая мембрана
- •Цитоскелет
- •Эукариотические хромосомы
- •Первичная перетяжка
- •Вторичные перетяжки
- •Типы строения хромосом
- •Политенные хромосомы
- •Трансмембранный транспорт в мембранной упаковке
- •Пассивный транспорт веществ через цитоплазматическую мембрану
- •Митохондрии
- •Рибосомы
- •Эндоплазматическая сеть
- •Аппарат Гольджи
- •11. Основные этапы транскрипционно-трансляционного потока информации у эукариот
- •Транскрипционно-трансляционный поток информации, активированный тироксином
- •Сравнительная характеристика про- и эукариот
- •Размножение. Развитие
- •1. Репликация у эукариот
- •2. Митотический цикл, 3. Митоз
- •4. Диплотена.
- •Гаметогенез
- •Общие закономерности эмбрионального развития
- •Гомеостаз
- •Критические периоды развития.
- •Тератогенез и тератогенные факторы
- •Дифференциальная активность генов в развитии
- •Эмбриональная индукция
- •Генетика
- •Особенности человека как объекта генетических исследований
- •Генные мутации
- •Хромосомные мутации
- •Геномные мутации
- •5. Генные болезни
- •Наследственные нарушения циркулирующих белков
- •Наследственные болезни обмена металлов Синдромы нарушения всасывания в пищеварительном тракте
- •6. Генетический полиморфизм людей.
- •Ядерный геном человека
- •Мутационная изменчивость
- •Комбинативная изменчивость
- •Модификационная изменчивость
- •11. Строение гена прокариот
- •12. Строение оперона прокариот.
- •Строение гена эукариот.
- •Транскрипция у прокариот
- •Транскрипция у эукариот
- •Трансляция у прокариот
- •Трансляция у эукариот
- •Строение зрелой иРнк эукариот
- •3' Полиадениновый хвост
- •Регуляция активности генов по типу индукции
- •Регуляция активности генов по типу репрессии
- •Репарация у эукариот
- •Регуляция экспрессии генов эукариот на уровне трансляции
- •Кариотип человека
- •Генная терапия
- •Виды генной терапии: терапия
- •Способы доставки в клетку генетической информации
- •Генеалогический метод антропогенетики
- •Популяционно-статистические методы антропогенетики
- •Цитогенетические методы антропогенетики
- •Генетический код
- •Межаллельные взаимодействия
- •Взаимодействия между неаллельными генами Комплементарность
- •Эпистаз
- •Полимерия
- •Сцепленное наследование. Кроссиговер
- •Генетика пола.
- •Сцепленное с полом наследование
- •Генокопии и фенокопии
- •Хромосомная теория наследственности
- •Цитоплазматическое наследование
- •Пенетрантность и экспрессивность
- •Антимутационные механизмы
- •Молекулярно-генетические методы антропогенетики
- •Диагностика наследственных заболеваний
- •4. Эволюционное учение.
- •Мутационный процесс как эволюционный фактор
- •Популяционные волны как эволюционный фактор
- •Борьба за существование как эволюционный фактор
- •Миграция как эволюционный фактор
- •Естественный отбор как эволюционный фактор
- •Дрейф генов как эволюционный фактор
- •Особенности человека разумного как вида.
- •Биологические факторы антропогенеза
- •Социальные факторы антропогенеза
- •Популяция как элементарная эволюционная единица
- •Проблема генетического груза
- •Биологические основы паразитизма
- •Паразитизм как экологический феномен.
- •Адаптации паразитов к паразитическому образу жизни.
- •Способы проникновения паразитов в организм человека
- •4) Трансмиссивный
- •Факторы действия паразита на организм хозяина. Факторы действия хозяина на организм паразита.
- •Биологические принципы борьбы с трансмиссивными и природноочаговыми заболеваниями.
- •Жизненные циклы паразитов. Чередование поколений и феномен смены хозяев.
- •Экология
- •1.Экологическая характеристика популяций.
- •2.Внутривидовые отношения
- •Межвидовые отношения
- •Пищевые цепи
- •Действие на человека абиотических факторов
- •Экологические категории организмов: продуценты, консументы и редуценты.
- •Адаптивные экологические типы человека.
- •Структура биогеоценоза.
- •Город как экологическая система.
- •Абиотические факторы города как среды обитания.
- •Природно-очаговые заболевания
- •Искусственные агроценозы.
- •Экологические проблемы современности.
- •Биотехнология.
- •Характеристика кривой зависимости степени благоприятности экологического фактора для организма от интенсивности этого фактора.
- •Современный экологический кризис биосферы.
- •Экологические системы.
- •Биосфера как экологическая система.
- •Экологическая генетика
- •Специфика среды обитания человека. Потребности человека.
- •Основные направления и результаты антропогенных изменений в окружающей среде.
- •Экологическая ниша человека
- •Биологическое оружие. Биологический терроризм.
- •Виды и основные свойства боевых биологических средств
- •Особенности поражения биологическим оружием
- •Антропоэкосистема.
- •Образ жизни человека. Здоровый образ жизни.
- •Болезнь человека как экологическое явление.
- •Основные свойства и признаки живого.
- •Клетки и организмы как неравновесные открытые системы.
- •Семья и жилище человека
Взаимодействия между неаллельными генами Комплементарность
Комплемента́рное (дополнительное) действие генов — это вид взаимодействия неаллельных генов, доминантные аллели которых при совместном сочетании в генотипе обусловливают новое фенотипическое проявление признаков. При этом расщепление гибридов F2 по фенотипу может происходить в соотношениях 9:6:1, 9:3:4, 9:7, иногда 9:3:3:1. Примером комплементарности является наследование формы плода тыквы. Наличие в генотипе доминантных генов А или В обусловливает сферическую форму плодов, а рецессивных — удлинённую. При наличии в генотипе одновременно доминантных генов А и В форма плода будет дисковидной. При скрещивании чистых линий с сортами, имеющими сферическую форму плодов, в первом гибридном поколении F1 все плоды будут иметь дисковидную форму, а в поколении F2 произойдёт расщепление по фенотипу: из каждых 16 растений 9 будут иметь дисковидные плоды, 6 — сферические и 1 — удлинённые.
Эпистаз
Эписта́з — взаимодействие неаллельных генов, при котором один из них подавляется другим. Подавляющий ген называется эпистатичным, подавляемый — гипостатичным. Если эпистатичный ген не имеет собственного фенотипического проявления, то он называется ингибитором и обозначается буквой I. Эпистатическое взаимодействие неаллельных генов может быть доминантным и рецессивным. При доминантном эпистазе проявление гипостатичного гена (В, b) подавляется доминантным эпистатичным геном (I > В, b). Расщепление по фенотипу при доминантном эпистазе может происходить в соотношении 12:3:1, 13:3, 7:6:3. Рецессивный эпистаз — это подавление рецессивным аллелем эпистатичного гена аллелей гипостатичного гена (i > В, b). Расщепление по фенотипу может идти в соотношении 9:3:4, 9:7, 13:3.
Полимерия
Полимери́я — взаимодействие неаллельных множественных генов, однозначно влияющих на развитие одного и того же признака; степень проявления признака зависит от количества генов. Полимерные гены обозначаются одинаковыми буквами, а аллели одного локуса имеют одинаковый нижний индекс.
Полимерное взаимодействие неаллельных генов может быть кумулятивным и некумулятивным. При кумулятивной (накопительной) полимерии степень проявления признака зависит от суммирующего действия генов. Чем больше доминантных аллелей генов, тем сильнее выражен тот или иной признак. Расщепление F2 но фенотипу происходит в соотношении 1:4:6:4:1.
При некумулятивной полимерии признак проявляется при наличии хотя бы одного из доминантных аллелей полимерных генов. Количество доминантных аллелей не влияет на степень выраженности признака. Расщепление по фенотипу происходит в соотношении 15:1.
Пример: цвет кожи у людей, который зависит от четырёх генов.
Сцепленное наследование. Кроссиговер
Независимое комбинирование признаков (третий закон Менделя) осуществляется при условии, что гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом. Следовательно, у каждого организма число генов, способных независимо комбинироваться в мейозе, ограничено числом хромосом. Однако в организме число генов значительно превышает количество хромосом.
В каждой хромосоме локализовано множество генов. Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются вместе.
Совместное наследование генов X Морган предложил назвать сцепленным наследованием. Число групп сцепления соответствует гаплоидному набору хромосом, поскольку группу сцепления составляют две гомологичные хромосомы, в которых локализованы одинаковые гены.
Способ наследования сцепленных генов отличается от наследования генов, локализованных в разных парах гомологичных хромосом. Так, если при независимом комбинировании дигибрид образует четыре типа гамет (АВ, Аb, аВ и аb) в равных количествах, то такой же дигибрид образует только два типа гамет: (АВ и аb) тоже в равных количествах. Последние повторяют комбинацию генов в хромосоме родителя.
Было установлено, однако, что кроме обычных гамет возникают и другие —Аb и аВ — с новыми комбинациями генов, отличающимися от родительской гаметы. Причиной возникновения новых гамет является обмен участками гомологичных хромосом, или кроссинговер.
Кроссинговер происходит в профазе I мейоза во время конъюгации гомологичных хромосом. В это время части двух хромосом могут перекрещиваться и обмениваться своими участками. В результате возникают качественно новые хромосомы, содержащие участки (гены) как материнских, так и отцовских хромосом. Особи, которые получаются из таких гамет с новым сочетанием аллелей, получили название кроссинговерных или рекомбинантных.
Частота (процент) перекреста между двумя генами, расположенными в одной хромосоме, пропорциональна расстоянию между ними. Кроссинговер между двумя генами происходит тем реже, чем ближе друг к другу они расположены. По мере увеличения расстояния между генами все более возрастает вероятность того, что кроссинговер разведет их по двум разным гомологичным хромосомам.
Расстояние между генами характеризует силу их сцепления. Имеются гены с высоким процентом сцепления и такие, где сцепление почти не обнаруживается. Однако при сцепленном наследовании максимальная величина кроссинговера не превышает 50%. Если же она выше, то наблюдается свободное комбинирование между парами аллелей, не отличимое от независимого наследования.
Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды. Человек специально проводит гибридизацию с целью получения необходимых вариантов комбинаций для использования в селекционной работе.