
- •1(1) Колебания. Возвращающая сила. Устойчивое и неустойчивое равновесие.
- •1(2) Колебания. Возвращающая сила. Устойчивое и неустойчивое равновесие.
- •2.(1) Пружинный маятник. Дифференциальное уравнение гармонических колебаний и его решение.
- •2.(2) Пружинный маятник. Дифференциальное уравнение гармонических колебаний и его решение.
- •3(1). Физический и математический маятники
- •5.Идеальный колебательный контур.
- •6 Энергия гармонического осциллятора
- •13(1).Дифференциальное уравнение затухающих механических колебаний и его решение.
- •13(2).Дифференциальное уравнение затухающих механических колебаний и его решение.
- •14.Энергия затухающего осциллятора.
- •15.Добротность гармонического осциллятора с затуханием.
- •16.(1) Затухающие гармонические колебания в электрическом контуре.
- •16.(2) Затухающие гармонические колебания в электрическом контуре.
- •17.Вынужденные электрические колебания.
- •18.Импеданс электрического колебательного контура.
- •20.Мощность, выделяющаяся в цепи переменного тока.
- •21(2) Вынужденные колебания
- •Волновые процессы. Уравнение волны.
- •2.Электромагнитные волны(интенс., поляр., об. Пл. Энергии,). Шкала э.-м. Волн. Кривая чувствительности глаза.
- •3,Плоские волны в упругой среде.
- •4,Отражение и преломление э.-м. Волн.
- •5,Бегущие гармонические волны, их характеристики
- •6,Эффект Доплера
- •8. Перенос энергии электромагнитной волной.
- •9. Излучение диполя.
- •10. Перенос энергии звуковой волной.
- •11. Стоячие волны.
- •12 Продольные и поперечные волны.Поляризация
- •13. Шкала электромагнитных волн
- •14(1). Принцип суперпозиции волн. Условия когерентности. Интерфе-ренция.
- •14(1). Принцип суперпозиции волн. Условия когерентности. Интерфе-ренция.
- •17. Способы получения когерентных световых волн.
- •18.(2) Принцип Гюйгенса
- •19. Дифракция Френеля на круглом отверстии
- •20. Дифракция на круглом диске. Зонная пластинка.
- •21(1). Дифракция Фраунгофера на щели
- •21.(2) Дифракция Фраунгофера на щели
- •22.Дифракция на одномерной решётке.
- •23. Зависимость дифракционной картины от параметров решетки. Спектральные приборы.
- •24 Дифракция на пространственной решетке
- •25. Зависимость показателя преломления от частоты излучения. Дисперсия.
- •26. Поглощение электромагнитной волны веществом. Закон Бугера.
- •27. Фазовая и групповая скорости волны.
- •28.Поляризация света
- •29. Закон Малюса.
- •30. Закон Брюстера.
- •31 (1)Рассеяние света.
- •31 (2)Рассеяние света.
- •32.(2) Тепловое излучение
- •33. Спектральная плотность энергетической светимости.
- •34.Закон Кирхгофа и следствие из него.
- •35 Черные и серые тела.
- •37.Законы теплового излучения. Закон Ст.-Больцмана.
- •40.(1)Формула Планка.
- •40.(2)Формула Планка.
- •41.Пирометрия.
6,Эффект Доплера
Эффе́кт До́плера — изменение частоты и длины волн, регистрируемых приёмником, вызванное движением их источника и/или движением приёмника.
где
— частота, с которой источник испускает
волны,
— скорость распространения волн в
среде,
— скорость источника волн относительно
среды (положительная, если источник
приближается к приёмнику и отрицательная,
если удаляется).
Для неподвижного источника и движущегося приёмника
где
— скорость приёмника относительно
среды (положительная, если он движется
по направлению к источнику).
Частота, регистрируемая неподвижным приёмником
8. Перенос энергии электромагнитной волной.
Электромагнитные волны представляют собой передачу изменений электромагнитного поля. Они, конечно, тоже переносят энергию, но не в форме кинетической и потенциальной энергии частиц среды, а в виде энергии электрического и магнитного полей. Именно в таком виде поступает от Солнца вся энергия, за счет которой поддерживается жизнь на Земле. Общая мощность электромагнитных волн, излучаемых Солнцем, выражается числом 4•1023 кВт. На расстоянии 150 миллионов километров, т. е. на таком удалении от Солнца, на котором находится Земля, интенсивность электромагнитных волн равна 1,4 кВт/м2. Эта последняя величина называется солнечной постоянной. Из-за отражения от облаков, рассеяния и поглощения в атмосфере до земной поверхности доходит примерно 43% этой энергии Если бы Солнце удалилось от нас на расстояние ближайшей звезды, т. е. на 4 световых года, то интенсивность его электромагнитного излучения у Земли составила бы всего 2•10-8Вт/м2. И все же, если бы даже лишь сотая часть этой энергии приходилась на видимый свет, то и тогда интенсивность последнего во много раз превосходила бы порог чувствительности нашего глаза.
9. Излучение диполя.
Простейшим излучателем электромагнитных волн является электрический диполь, электрический момент которого изменяется во времени по гармоническому закону p= р0 cos wt, где р0 — амплитуда вектора р. Примером подобного диполя может служить система, состоящая из покоящегося положительного заряда +Q и отрицательного заряда –Q, гармонически колеблющегося вдоль направления р с частотой w.
Задача об излучении диполя имеет в теории излучающих систем важное значение, так как всякую реальную излучающую систему (например, антенну) можно рассчитывать рассматривая излучение диполя. Кроме того, многие вопросы взаимодействия излучения с веществом можно объяснить на основе классической теории, рассматривая атомы как системы зарядов, в которых электроны совершают гармонические колебания около их положений равновесия.
Характер электромагнитного поля диполя зависит от выбора рассматриваемой точки. Особый интерес представляет так называемая волновая зона диполя — точки пространства, отстоящие от диполя на расстояниях r, значительно превышающих длину волны (r>>l), — так как в ней картина электромагнитного поля диполя сильно упрощается. Это связано с тем, что в волновой зоне диполя практически остаются только «отпочковавшиеся» от диполя, свободно распространяющиеся поля, в то время как поля, колеблющиеся вместе с диполем и имеющие более сложную структуру, сосредоточены в области расстояний r < l. Если волна распространяется в однородной изотропной среде, то время прохождения волны до точек, удаленных от диполя на расстояние r, одинаково. Поэтому во всех точках сферы, центр которой совпадает с диполем, фаза колебаний одинакова, т. е. в волновой зоне волновой фронт будет сферическим и, следовательно, волна, излучаемая диполем, есть сферическая волна.