
- •6.Предмет и задачи физиологии растений. Фитофизиология как научная основа земледелия и биотехнологии.
- •2.Пассивное и активное поступление веществ в клетку. Теории. Роль переносчиков, роль мембранного потенциала.
- •6. Роль воды в жизни растений. Водообмен и его составляющие.
- •7. Поступление воды в клетку. Набухание как первичный процесс поступления воды в прорастающее семя. Осмотические явления в клетке. Взаимоотношения осмотического давления клетки и почвенного раствора.
- •11. Единицы измерения транспирации. Кутикулярная транспирация. Регуляция транспирации.
- •15. Критический период к засухе. Повышение засухоустойчивости растений. Диагностика полива по физиологическим признакам.
- •16. Жароустойчивость, механизмы адаптации к перегреву, определение жароустойчивости растений.
- •17. Корневой анаэробиоз. Причины нарушения метаболизма растений при переувлажнении или затоплении почвы. Повышение влагоустойчивости растений. Назвать растения контрастные по влагоустойчивости.
- •18. Физиологические функции корней. Корневая система как орган поглощения и синтеза веществ. Воздействие корней на почву. Усвоение труднодоступных соединений почвы.
- •19. История развития учения о минеральном питании растений. Минеральные удобрения и урожай. Применение удобрений в России и Западной Европе (в сравнительном плане).
- •20. Деление элементов питания на макро и микроэлементы. Биологическая и хозяйственная значимость элементов питания. Основные ионы, которые поглощают растения. Синергизм и антагонизм ионов.
- •21. Азотное питание растений. Источники азота для растений. Особенности нитратного и аммонийного (аммиачного) питания растений. Превращение нитратов в растениях.
- •22. Включение аммиака в метаболизм растений. Синтез первичных аминокислот (прямое аминирование и переаминирование). Незаменимые аминокислоты.
- •23. Синтез амидов и их роль в жизни растений. Первичный и вторичный синтез белка (по д.Ы. Прянишникову).
- •24. Основные формы азотных удобрений (действующее вещество, физиологическая кислотность или щелочность, особенности применения). Коэффициент усвоения. Рациональное применение.
- •25. Круговорот азота в природе и земледелии. Управление этими процессами (рН, температура, аэрация, ингибиторы нитрификации).
- •26. Физиологическая роль фосфора. Фосфорные удобрения. Коэффициент усвоения. Рациональное применение.
- •27. Физиологическая роль калия. Калийные удобрения. Коэффициент усвоения. Рациональное применение.
- •28. Сера, магний, кальций. Физиологическая роль. Способность к реутилизации. Обеспечение растений этими элементами питания.
- •29. Микроэлементы и их физиологическое значение в жизни растений.
- •30. Внешние (морфологические) признаки минеральных голоданий растений. Их устранение. Действие избытка азота на урожай и его качество.
- •31. Накопление нитратов в растениях. Пдк нитратов для некоторых растительных продуктов (картофель, капуста, томаты, листовые овощи и др.). Снижение накопления нитратов в растениях и продукции.
- •32. Физиологические основы применения удобрений. Способы подкормки.
- •33. Микроорганизмы и растения. Ризосферные и филлосферные микроорганизмы. Взаимоотношения. Роль микроорганизмов в минеральном питании растений.
- •35. Биологический азота в земледелии. Общие представления о биологической азотфиксации. Роль нитрогеназы и легоглобина. Масштабы азотфиксации. Симбиотические азотфиксаторы.
- •35. Ассоциативные и свободноживущие азотфиксаторы. Бактериальные препараты. Эффективность применения. Механизм действия диазотрофов.
- •36. История развития учения о фотосинтезе.
- •37. Пигменты растений, строение и функции. Спектры поглощения.
- •1. Хлорофиллы
- •2. Каротиноиды
- •3. Фикобилины
- •37. Хлорофилл, его строение, расположение в мембранах, свойства, спектры поглощения.
- •39. Световая фаза фотосинтеза. Циклическое и нециклическое фосфорилирования. Конечные продукты световой фазы.
- •1. Поглощение света и возбуждение хлорофилла
- •2. Нециклический и циклический транспорт электронов
- •40. Доказательства природы выделяющегося кислорода. Роль фоторазложения воды.
- •41. Темновые реакции фотосинтеза (биохимический этап). Использование атф и надфн в темповых реакциях.
- •42. Химизм фотосинтеза с-4 растений. Отличия фотосинтеза и биологии от с-3 растений.
- •43. Фотосинтез и биологически особенности суккулентов (сам – растений).
- •44. Зависимость фотосинтеза от внешних факторов.
- •45. Пигменты водорослей. Особенности окраски и использование лучей в зависимости от глубины обитания водорослей. Теория хроматической адаптации.
- •46. Сравнение фотосинтеза и хемосинтеза. Превращение энергии в этих процессах. Значение а природе и земледелии.
- •47. Космическая роль зеленых растений. Потенциальная продуктивность растений. Кпд фотосинтеза различных растений.
- •48. Фотосинтез и урожай. Теория фотосинтетической продуктивности.
- •49. Особенности фотосинтетического и окислительного фосфорилирования. Превращение энергии в процессах фотосинтеза и дыхания.
- •50. Роль дыхания в обмене веществ. Взаимосвязь процессов фотосинтеза и дыхания.
- •5 1. Гликолиз. Химизм, значение, выход энергии атф.
- •52. Цикл Кребса, химизм, значение, выход энергии атф.
- •53. Дыхание – центральное звено обмена веществ и энергии. Использование продуктов дыхания в синтетических процессах.
- •54. Зависимость дыхания от внешних факторов. Регуляция дыхания растений.
- •57. Фитогормоны (5 классов) и их роль в жизни растений (общий обзор).
- •58. Гормоны – стимуляторы роста и развития.
- •59. Гормоны – ингибиторы роста и развития.
- •60. Синтетические аналоги гормонов и их использование в земледелии и биотехнологиях.
- •61. Регуляция роста растений с использованием фиторегуляторов. Борьба с полеганием растений.
- •62. Рост растений. Фазы роста. Большая кривая роста.
- •63. Рост растений как интегральный показатель обмена веществ. Зависимость роста от внешних факторов.
- •64. Развитие растений. Гормональная теория цветения растений. Регуляция цветения растений.
- •65. Фазы, стадии и этапы органогенеза растений. Значение для практики. Управление развитием растений.
- •66. Движение растений (тропизмы и настии). Значение в жизни растений.
- •67. Периодические явления в жизни растений. Покой. Этапы покоя. Выведения из состояния покоя.
- •68. Морозоустойчивость растений. Природа морозоустойчивости, повреждения заморозками. Зимостойкость. Повышение устойчивости к низким температурам.
- •69. Физиология растений и охрана окружающей среды.
- •70. Физиология растений в городе и промышленных центрах. Повышение устойчивости растений к загрязнениям окружающей среды (кислотным осадкам, тяжелым металлам, запылению и задымлению).
6. Роль воды в жизни растений. Водообмен и его составляющие.
Вода является главной составной частью растений. Ее содержание неодинаково в разных органах растения (так, в листьях салата она составляет 95 %, а в сухих семенах - не более 10 % от массы ткани) и зависит от условий внешней среды, вида и возраста растения. Для своего нормального существования растение должно содержать определенное количество воды. Два процесса – поступление и испарение воды – называют водным балансом.
Вода - это среда, в которой протекают процессы обмена веществ. Все реакции гидролиза, окислительно-восстановительные реакции идут с участием воды. Вода служит источником кислорода, выделяемого при фотосинтезе, и водорода, используемого для восстановления углекислого газа. Вода поддерживает конформацию молекул белка, устойчивость структур цитоплазмы и оболочки клеток в упругом состоянии. С изменением тургорного давления связаны некоторые движения частей растений.
Заряды в молекуле воды распределены неравномерно, так как атом кислорода воды оттягивает электроны от атомов водорода. Поэтому молекула воды представляет собой диполь: один полюс молекулы заряжен положительно, а другой отрицательно. Благодаря этому молекулы воды могут ассоциировать друг с другом, ионами и белковыми молекулами. Вода участвует в поглощении и транспорте веществ, так как является хорошим растворителем. Гидратные оболочки, окружающие ионы, ограничивают их взаимодействие.
Вода обладает высокой теплоемкостью - 1кал/град, что позволяет растению воспринимать изменения температуры окружающей среды в смягченном виде. Испарение воды растениями - транспирация служит основным средством терморегуляции у растений. Растения испаряют очень много воды. Большой расход воды связан с тем, что растения обладают значительной листовой поверхностью, необходимой для поглощения углекислого газа, содержание которого в воздухе незначительно (0,032 %).
Водный режим растений, водообмен, поступление воды в растение и отдача её растением, необходимые для его жизнедеятельности (обмена веществ, роста, развития, размножения), В. р. р. складывается из трёх последовательно протекающих и тесно связанных между собой процессов: поступления воды в корни растений из почвы; поднятия воды по корням и стеблям в листья и в расположенные на стеблях растущие эмбриональные ткани, точки роста; испарения избыточной воды из листьев в окружающую атмосферу. Общее количество воды, проходящей через растение, чрезвычайно велико. В умеренно влажном климате за вегетационный период одно растение кукурузы или подсолнечника расходует до 100 л воды, а один гектар посева пшеницы испаряет за лето 2—3 тыс. м3 воды. В среднем на создание каждого килограмма урожая сухой массы растение расходует около 250—300 кг воды, а в засушливом климате — до 500—600 кг.
Вода, получаемая растением из почвы, поглощается не всей поверхностью корней, а только молодыми их окончаниями, так называемыми корневыми мочками и корневыми волосками. Клетки всасывающей зоны корня обладают по отношению к воде своеобразной полярностью. Наружная их сторона всасывает воду, а внутренняя выталкивает её в сосуды корня. Так в растений создаётся корневое давление, нагнетающее воду вверх по корню и стеблю с силой 2—3 и более атмосфер. С такой же примерно силой корень растения сосет воду из почвы и преодолевает сопротивление почвенных частиц, удерживающих воду на своей поверхности силами адсорбции и набухания почвенных коллоидов. По мере уменьшения толщины слоя воды, облекающей почвенные частицы, силы адсорбции, удерживающие воду, быстро возрастают и становятся равными, а затем и большими, чем всасывающая сила корневых клеток, поэтому корни растений не могут отнять от почвы всю находящуюся в ней воду и в почве всегда остаётся некоторое количество недоступной для растения воды. В таком случае дальнейшая потеря растением воды уже не может возмещаться за счёт поступления её из почвы: содержание воды в растении падает и оно увядает.
Лист растений обладает рядом физиологических особенностей, позволяющих ему в значительной степени регулировать отдачу воды. Испарение воды с поверхности растений получило название транспирации. Понижая содержание воды в клетках листовой мякоти и создавая состояние ненасыщенности водой, транспирация способствует возникновению значительной сосущей силы, обеспечивающей ток воды из сосудов листовых жилок в клетки. Это обусловливает движение воды вверх по растению, нередко значительно превосходящее по скорости накачивание воды клетками корневых мочек. В силу свойственного молекулам воды сцепления друг с другом вода, переходящая из сосудов в живые клетки мякоти листа тянет за собой весь столб воды, заполняющей проводящую систему вплоть до самого корня. В результате во всём растений создаётся натяжение воды в сосудах, способствующее поступлению воды из почвы в корень.
Для получения высоких и устойчивых урожаев чрезвычайно важное значение имеют мероприятия по накоплению запасов влаги в почве и уменьшению ее расходования (например, снегозадержание, вспашка под зябь, раннее боронование весной для задержания влаги, посадка полезащитных лесных полос и т.д.). В засушливых областях прибегают к ирригации или искусственному орошению земель.
Избыток влаги в почве может, однако, оказаться вредным для растений, поскольку при затоплении почвы в её капиллярах не остаётся воздуха, необходимого для дыхания корней и их нормальной жизнедеятельности. Кроме того, в затопленной почве усиливаются анаэробные бактериальные процессы, приводящие к накоплению веществ, отравляющих корни. Излишнее количество влаги можно удалить осушением почвы. Оптимальным является увлажнение почвы, при котором в почве будет содержаться достаточное количество доступной для растения воды, а также и воздуха.
Различные растения в неодинаковой мере нуждаются в увлажнении почвы. Например, ксерофиты приспособлены к жизни в условиях аридного климата (в степях, пустынях, полупустынях) и в более влажном климате в условиях низкого водоснабжения. В водоёмах, на болотах растут гидрофиты и гигрофиты. Промежуточное положение между этими крайними группами растений занимают мезофиты, представляющие собой наиболее многочисленную группу растений, к которой принадлежит и большая часть культурных растений.