- •16. Типы равноярких излучателей.
- •20. Световой вектор.
- •21. Структура органа зрения. Светлота и яркость, стандартный фотометрический наблюдатель.
- •24. Понятие о анизотропных средах. Теория двойного лучепреломления Френеля.
- •25. Поверхность волны (лучевой) и поверхность нормалей.
- •26. Эллипсоид Френеля. Построение поверхностей волн по эллипсоиду Френеля.
20. Световой вектор.
Для характеристики светового поля введен усредненный по времени вектор плотности переноса световой энергии — световой вектор ε. Световой вектор определяет в любой точке поля значение (модуль) и направление вектора переноса световой энергии в единицу времени через единицу площади, перпендикулярной направлению переноса. Рассмотрим некоторые свойства светового вектора.
Поток светового вектора Ф' через некоторую поверхность равен разности световых потоков, падающих на, одну и другую сторону этой поверхности;
(6.22)
Проекция светового вектора εN на любое направление определяется разностью освещенностей двух сторон некоторой площадки, на нормаль к которой спроектирован вектор:
(6.23)
где Еβ, Еπ-β — освещенности сторон поверхности; β— угол между на-
правлением ε̅ и нормалью к поверхности.
Следовательно, если источники расположены по одну сторону освещаемой поверхности, то проекция светового вектора на нормаль к этой поверхности равна ее освещенности.
Световой вектор определяется векторной суммой нормальных значений освещенности, а средняя сферическая освещенность — арифметической суммой этих же величин. Пусть имеются излучающая поверхность А и точка Б светового поля. Для того чтобы определить проекции светового вектора в точке Е, нужно: выбрать направление координатных осей с началом в точке Е; выделить на излучающей поверхности А малый элемент dA и принять его за точечный источник света; найти нормальную освещенность dEn, создаваемую элементом dA (точечным источником) в точке Б; определить функцию ценности освещен -ностей координатных плоскостей и точке Б; найти ортогональные проекции светового вектора на координатные оси, создаваемые участком dA, которые равны произведениям dEn па соответствующие функции ценности; рассчитать проекции светового вектора, проинтегрировав по излучающей поверхности выражения, описывающие элементарные проекции светового вектора.
21. Структура органа зрения. Светлота и яркость, стандартный фотометрический наблюдатель.
Физиологическая оптика - это наука о зрительных ощущениях, которые возникают в организме человека в результате работы органа зрения. Орган зрения состоит из двух глаз, зрительных нервов и зрительного центра коры головного мозга.
Сетчатка имеет слоистое строение. Микроскопически в ней выделяют 10 слоёв. Самый наружный слой является свето-(цвето-)воспринимающим, он обращен к сосудистой оболочке (вовнутрь) и состоит из нейроэпителиальных клеток — палочек и колбочек, воспринимающих свет и цвета (у человека световоспринимающая поверхность сетчатки очень мала — 0,4-0,05 мм, следующие слои образованы проводящими нервное раздражение клетками и нервными волокнами).
Светлота и яркость
Под действием света сетчатка подвергается световому раздражению. Возбуждение сетчатки передается через зрительный нерв в мозг и вызывает ощущение света. Свойство зрительного ощущения, согласно которому предметы кажутся испускающими больше или меньше света, называется светлотой. Возбуждение сетчатки определяется ее освещенностью Ec, которая связана с яркостью предметов L:
Ес = L Aзр/l2, |
(1.1) |
где коэффициент пропускания глазных сред, Азр площадь зрачка, l длина глаза.
Таким образом, интенсивность светового раздражения сетчатки определяется яркостью предметов, а интенсивность светового ощущения светлотой. Светлота есть мера ощущения яркости. Яркость величина объективная, она может быть измерена соответствующим прибором, например, яркомером. Светлота величина субъективная. Вместе с тем между раздражением и ощущением можно установить определенную количественную зависимость.
Функция V(), принятая международной комиссией по освещению (МКО), положена в основу системы световых величин и единиц. Она определяет так называемого стандартного фотометрического наблюдателя, т. е. приемник излучения, относительная спектральная чувствительность которого соответствует V().
22. Основные понятия и определения колориметрии. Цвет и его компоненты. Цветовое уравнение.
Под цветом мы понимаем весь комплекс зрительных ощущений. Он включает в себя общий уровень возбуждения органов зрения и соотношение уровня возбуждения К, З, С.
L = L к + L з + L с
Абсолютный спектр чувствительности колометрии определен как:
V(λ) = Лк * К(λ) + Лз * З(λ) + Лс * С(λ)
Л – яркостные коэффициенты
К(λ) – удельные координаты
Lv = 683(Лк * К + Лз * З + Лс * С)
1 1 1
к = ― * К; з = ― * З; с = ― * С;
σ σ σ
к,з,с - координаты цветности, они характеризуют цветность.
к + з + с = 1 . Такая схема называется схема КЗС. В ней 3 основных цвета.
При графическом изображении цветового пространства начало всех секторов помещено в точке О. Это точка черного цвета. Цветовое пространство бесконечно и характеризуется как положительно, так и отрицательно. В то же время ощущениям вызываемым в органе зрения отвечают лишь положительные значения яркостей.
Локус представляет собой непрерывную линию. Она сжата в начале (380 – 440) и растянута в конце (580 – 660). Соединив точки, соответствующие положению цветов с длинами волн 380 и 700 нм, мы получим прямую линию, на которой будут лежать чистые пурпурные цвета, отсутствующие в спектре, но которые можно получить путем смешения чистых синего и красного цветов. Если все реальные излучения состоят из монохроматических, а цветовые вектора подчинены правилу векторного суммирования, то все реальные цвета лежат внутри локуса. А линию, являющуюся геометрическим местом точек цветности монохроматических излучений и соответствующую 100% насыщенным спектральным цветам, называют локусом.
Цветовая система XYZ МКО. Для того, чтобы избежать отрицательных значений кривых сложения, они были подвергнуты линейному математическому преобразованию, в результате чего были получены новые кривые сложения, обозначаемые x_bar(λ), y_bar(λ), z_bar(λ) и известные как кривые сложения цветов для стандартного колориметрического наблюдателя МКО 1931 г.
Они были найдены путем перенесения системы цветовых координат, основанной на использовании трех основных цветов R = 700 нм, G = 546.1 нм и B = 435.8 нм, в систему координат, основанную на использовании трех воображаемых (физически не существующих) цветов X, Y и Z, как это показано на рис. 2.6. Эти цвета являются физической абстракцией и выполняют лишь вспомогательную математическую роль.
Принято при Lx=0; Ly=1; Lz=0; Lv=683Y.
Колориметристами было предложено использовать оценки, основанные на использовании в качестве эталона сравнения непосредственно зрительный аппарат человека.
|
(2.1) |
где Rγ — реакция колбочек типа γ, Rβ — реакция колбочек типа β, Rρ — реакция колбочек типа ρ на поток светового излучения в зависимости от длины волны λ.
В соответствии с рекомендацией МКО переход от основных цветов Райта к цветам XYZ осуществляется по формулам:
|
где R, G, B — основные цвета с длинами волн 700, 546.1 и 435.8 нм.
Координаты цветности x, y, z будут в соответствии с ф. (2.1) определяться как
|
(2.6) |
23. Коллориметричесике системы RGB, XYZ, Lλp, равноконтрастные системы.
XYZ
в 1931г. Приняла МКО. Она характеризуется
осн. цветами x,y,z,
яркостными коэффициентами и удельными
значениями координат
;
;
.
При больших объектах наблюдения хар.
зрения меняются, поэтому в 1864г. принята
дополнительная система XYZ10.
При Лх=0
Лу=0
Лz=0
Lv=683Y
,это
ф-лы для расчета координат цвета.
координаты цветности:
;
;
;
.
Цветовые
системы КЗС и XYZ
характеризуются координатами цвета,
это не соответствует ощущению цвета и
цветности. Поэтому существует система
Lλp.
Она построена на понятии фотометрической
яркости, цветового тона(λ)
и чистоты цвета(р). Цветовой тон. Цвет в
этой системе описывается фотометр.
яркостью и цветностью. Цветность хар.
цвет. тоном и чистотой. Цв. тон – длина
волны монохроматического излучения
кот. в смеси с белым даст искомую
цветность. Цв. тон опред. по диаграмме
цветности.
для
пурпурных цветов: N-пурпурный
цвет нельзя получить смешением монохром.
и белого. Чистота цвета Р опр. пропорции
смеси монохром. и белого, цветности
которых совпадают с цветностью данного
цвета.
Lλ
и Lδ
– яркости мон. и б.; L=
Lλ+Lδ
– яркость
искомого.
Равноконтрастные
системы. Колориметр. системы идентифицируют
цвета по координатам цвета. Однако
оценивать визуальные различия между
цветами с помощью системы нельзя. Такая
оценка осуществляется в равноконтрастных
системах. В этих системах расстояние
между цветами будет соответствовать
различиям ощущений. Порог – это та min
разность, кот. воспринимает чел. глаз.
Самой простой (приближенной), явл. сист.
UV,
МКО 1960г. В этой сист. координаты цвета
U
и V
они опр. линейным преобразованием
координат из сист. XYZ:
U=4x/(-2x+12yy+3)=4X/(X+15Y+3Z);
V=6y/(-2x+12y+3)=6Y/(X+15Y+3Z),
где x,y
– координаты цветности; Х,Y
– координаты цвета.
-
различия цветности. Система UV
MКО
не вполне контрастна. МКО 1976г. UV->U*V*L*,
где U*,V*
- координаты
цветности; L*-светлота.
U*=13
L*(U'-U'δ);V*=13
L*(V'-V'δ);L*=
;
U=4x/(-2x+12yy+3)=4X/(X+15Y+3Z); V=9y/(-2x+12y+3)=9Y/(X+15Y+3Z).
