
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Ma2 Glava 6.doc
X
- •Глава 6. Ряды. §6.1. Свойства сходящихся рядов.
- •Пример 1. Докажем расходимость гармонического ряда, используя определение расходимости числового ряда.
- •Теорема 2. (сходимость линейной комбинации) Если ряды и – сходящиеся соответственно к суммам и , то ряд
- •Теорема 3. Ряд и каждый его остаток либо оба сходятся либо оба расходятся.
- •§6.2. Знакоположительные ряды.
- •Теорема 2. (Дирихле) Если произвольно переставить члены сходящегося знакоположительного ряда, то получится сходящийся ряд, сумма которого равна сумме исходного ряда.
- •Пример 1. Исследуем на сходимость обобщённый гармонический ряд в зависимости от числового параметра .
- •Теорема 4. (Признак сравнения) Если , (6)
- •Пример 2.
- •Теорема 5. ( Предельный признак сравнения ) Пусть и . Тогда ряды и или оба сходятся, или оба расходятся.
- •Пример 3. Пользуясь следствием исследуем на сходимость ряды 1) , 2) .
- •Теорема 6. ( Признак Даламбера ) Если для ряда (1) выполняются условия и , то : 1) при ряд (1) сходится; 2) при ряд (1) расходится.
- •Пример 4.
- •Теорема 7. ( Признак Коши ) Если для ряда (1) выполняются условия и , то : 1) при ряд (1) сходится; 2) при ряд (1) расходится.
- •Пример 5. .
- •§6.3. Знакопеременные ряды.
- •Теорема 2. ( Абеля ) Ряд (1) является сходящимся, если сходится ряд , а последовательность является мнотонной и ограниченной.
- •Теорема 3. ( Признак Лейбница ) Если последовательность монотонно стремится к нулю, то ряд (8) является сходящимся, причём
- •Пример 2. Поскольку , то , а поэтому ряд сходится. §6.4. Абсолютная и условная сходимость ряда.
- •Теорема 1. Пусть ряд является знакопеременным. Если ряд сходится, то и ряд тоже сходится.
- •Теорема 2. При произвольной перестановке слагаемых абсалютно сходящегося знакопеременного ряда получается ряд, сходящийся абсолютно к сумме исходного ряда.
- •Пример. Ряд является условно сходящимся. Пусть – его сумма.
- •Пример 1. .
- •Пример 2. .
- •Пример 3. .
- •Пример 4.
- •Теорема 2. (Критерий Коши рсфр) Для того чтобы функциональный ряд был равномерно сходящимся на множестве , необходимо и достаточно, чтобы выполнялось условие Коши:
- •Теорема 3. ( Признак Вейерштрасса рсфр) Если функциональный ряд имеет на множестве сходящуюся числовую мажоранту, то он равномерно сходится на .
- •1°. Непрерывность суммы ряда.
- •3°. Почленное дифференцирование.
- •1°.Радиус и интервал сходимости.
- •Пример 1. Найти область сходимости степенного ряда .
- •Пример 2. .
- •2°.Свойства степенных рядов. Теорема 3. Степенной ряд сходится равномерно на каждом отрезке, который полностью содержится в его интервале сходимости.
- •Теорема 4. ( Непрерывность суммы степенного ряда ) Сумма степенного ряда является непрерывной функцией на его интервале сходимости.
- •Теорема 5. (Почленное интегрирование степенного ряда) Степенной ряд (1), сходящийся на интервале к сумме , можно почленно интегрировать на каждом отрезке , т.Е. Имеет место равенство
- •Теорема 6. (Почленное дифференцирование степенного ряда) На интервале сходимости степенной ряд можно почленно дифференцировать сколько угодно раз. При этом имеет место равенство
- •Пример 3. Вычислить сумму ряда .
- •§6.8. Ряды Тейлора.
- •1°. Ряд Тейлора .
- •Пример 1. Разложить функцию в ряд Тейлора и найти его сумму.
- •Теорема 1. ( Достаточное условие сходимости ряда Тейлора) Пусть функция является бесконечно дифференцируемой на промежутке и существует число . Тогда ряд Тейлора (2) сходится на к .
- •Теорема 2. (о единственности разложения функции в степенной ряд) Если степенной ряд имеет радиус сходимости , то его коэффициенты выражаются по формуле .
- •4) Степенной бином.
4) Степенной бином.
Для функции
из
соответствующей
формулы Маклорена
получаем
ряд Маклорена
.
(9)
Если
,
то все коэффициенты
при степенях
равны
нулю и разложение
(9) превращается
в формулу бинома Ньютона
,
которая
имеет
место
.
В остальных случаях при помощи признака Даламбера получается, что ряд (9) сходится при .
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]