Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 6.doc
Скачиваний:
6
Добавлен:
23.09.2019
Размер:
1.31 Mб
Скачать

14 Выводов

Применяются следующие типы корпусов:

1: 5 модификаций

Металлостеклянные, металлополимерные и пластмассовые корпуса. Выводы плоские и круглые, шаг – 2,5 мм. Рациональны с точки зрения компоновки с дискретными радиоэлементами приемоусилительной аппаратуры, достигаются высокая плотность заполнения объема. Широкое проименение в линейных БГИС.

2: 2 подтипа

Металлостеклянное и металлополимерное исполнение. Выводы плоские.

3: 4 модификации по числу выводов 8, 10, 12 и 32 шт.

Корпуса металлостеклянные, герметизуются вакуумплотной крышкой из ковара. Имеют малую плотность заполнения объема как самого корпуса, так и в более высоких структурных уровнях.

4: 3 модификации

Плоские корпуса с планарными выводами. Шаг выводов – 1,25 мм. Корпуса металлостеклянные, металлокерамические. Герметизация выводов выполняется металлостеклянным спаем электронно-лучевой сваркой (ковар-стекло).

5: 1 модификация

Прямоугольные корпуса с выводами в виде контактных площадок по периметру корпуса с шагом до 0,5 мм.

Рис. 6.11. Корпуса ИС.

Некоторые применяемые корпуса были разработаны до введения этого ГОСТв и имеют собственные имена, например, «Посол», «Тропа» и т.п. Ведутся интенсивные работы по разработке новых видов корпусов, позволяющих уменьшать массогабаритные характеристики МСБ и увеличить плотность их компоновки на платах. Особое внимание заслуживают разработки керамических и пластмассовых корпусов.

Преимущество керамических корпусов – высокая герметичность, обеспечение хорощих электрических характеристик приборов, возможность двустороннего монтажа, малые габариты. Применение нитрита алюминия и карбида кремния вместо традиционного керамического материала на основе Al2O3 повышает теплопроводность корпусов. Наряду с керамическими корпусами продолжается работа над пластмассовыми, изготовленными из недорогой полимеризующейся при термообработке пластмассы. Они более дешевые и более устойчивы к термоударам, чем керамические. Целые серии таких корпусов уже выпущены фирмами США, Япония, ФРГ.

6.4.2. Бескорпусные мкс и мсб.

Широкие возможности для микроминиатюризации РЭС открывает применение бескорпусных МКС с последующей герметизацией либо всего устройства, либо отдельных блоков. Выполняются бескорпусные МКС по гибридно-пленочной технологии с использованием активных и пассивных элементов и/или бескорпусных полупроводниковых ИС, размещаемых на керамических или ситалловых подложках. Высота бескорпусных МКС не превышает 5 мм.

Правила конструирования МКС установлены ОСТ4 ГО.010.043 «Микросборки. Установка бескорпусных элементов и микросхем. Конструирование».

Предпочтительные размеры подложек 20х15, 24х20, 30х16, 30х24, 36х24, 48х25, 48х20, 48х30, 60х10, 60х24, 60х48. Размеры подложек МКС определяются монтажными площадками.

Внешними выводами бескорпусных МКС могут быть проволочки, балочки, штыри, лепестки, соединяемые с контактными площадками, металлизированными отверстиями или пазами подложек.

Схемы конструкций бескорпусных МКС.

1 – подложка; 2 – зона расположения компонентов МКС; 3 – выводы.

Рис.6.12. Схемы конструкций бескорпусных РЭС.

Выводы, контактные площадки, отверстия или пазы располагаются по краям подложек в соответствии с шагом координатной сетки печатной платы.

6.5. Унифицированные конструкции модулей второго уровня.

Типовой конструктивной единицей РЭС, объединяющей модули первого уровня, является ячейка с каркасом или без него.

Бескаркасные ячейки представляют собой обычные ПП или МПП и применяются в аппаратуре, к которой не предъявляются жесткие требования в отношении механической прочности. На ПП монтируются элементы 0-го и 1-го уровней, планка для крепления, часто являющаяся и направляющей для установки в микроблок, а также объемный соединитель или печатный разъем, изготовленный вместе с рисунком печатных проводников.

Типовые бескаркасные конструкции.

Рис.6.13. Типовые бескаркасные конструкции.

В бескаркасных конструкциях применяют корпусированные МКС, что связано с потерями объема микроблока, возрастанием числа соединительных элементов, слоев коммутирующих плат. Применение же бескорпусных МКС является перспективной мерой снижения объема РЭС. В каркасных конструкциях несущим элементом служит металлическая рамка (алюминиевая или магниевая), повышающая прочность конструкции и служащая теплоотводом. Каркасные конструкции могут иметь одностороннюю, двухстороннюю или сдвоенную компоновочные схемы.

Пример односторонней компоновки каркасной конструкции показан на рис. 6.14.

Несущая рамка с теплоотводами 3 имеет сквозные отверстия для межсхемной коммутации и зоны выходных отверстий или контактов. В центральной зоне рамки к ее продольным планкам-теплоотводам с помощью демпфирирующего теплоотводящего компаунда крепит бескорпусные МКС, которые выполнены на ситалловых подложках. С противоположной стороны по отношению к МКС к планкам-теплоотводам рамки через изолирующую прокладку приклеивается ПП. Электрическое соединение контактных площадок МКС с контактами ПП осуществляется золотыми перемычками диаметром 30…50 мкм.

1 – МКС на ситалловой подложке; 2 – печатная плата; 3 – несущая рамка;

4 – соединительные перемычки.

Рис. 6.14. Односторонняя компоновка каркасной конструкции.

1 – несущая рамка; 2 – бескорпусные МКС; 3 – соединительные перемычки; 4 – печатные вставки с соединительными штырями.

Рис. 6.15. Двусторонняя компоновка каркасной конструкции.

В двустороннем варианте компоновочной конструкции бескорпусные МКС устанавливаются с двух сторон планки несущей рамки (рис.6.15.). Соединения между МКС осуществляются через соседние контактные площадки термокомпрессий. Коммутация между МКС, расположенных с разных сторон рамки, производится с помощью печатных вставок и микропроволочного жгутового монтажа.

Сдвоенная компоновочная схема представляет собой две односторонние каркасные конструкции с многослойной печатной платой между ними. Общее крепление осуществляется развальцованными или резьбовыми втулками по краям модуля.

Рассмотренные конструктивные решения являются наиболее эффективными, т.к. они базируются на типовых, унифицированных элементах конструкции. Типовая компоновка и монтаж, унификация типоразмеров, вариантов размещения МКС повышает их эксплуатационную надежность и взаимозаменяемость, снижают трудоемкость сборки, контроля и регулировки.

Коммутацию электрических соединений модулей первого уровня осуществляют с помощью навесного проводного монтажа и печатных схем. Технической реализацией последних явились печатные платы (ПП), представляющие собой диэлектрическое основание с нанесенным на него токопроводящим рисунком схемы.

Печатный монтаж, сохраняя все возможности проводного, имеет следующие преимущества:

  • получение большой плотности монтажных соединений;

  • резкое уменьшение числа паянных соединений и увеличение надежности;

  • повышение электрических нагрузок в коммутационных цепях;

  • повышение вибропрочности, теплоотдачи, стойкости к климатическим воздействиям;

  • обеспечение стабильной повторяемости параметров изделий;

  • микроминиатюризация аппаратуры;

  • унификация и стандартизация конструкций РЭС.

ПП представляют собой сложные изделия из разнородных материалов. Они служат основой ячейки и предназначены для размещения на них элементов с планарными и штыревыми выводами.

При разработке ПП конструктору приходится решать следующие задачи:

конструктивные (размещение элементов, трассировка проводников, минимизация числа слоев платы и т.п.);

  • радиотехнические (расчет паразитных наводок, параметров линий связи и т.д.);

  • теплотехнические (температурный режим работы, теплоотвод);

  • технологические (выбор метода изготовления, оборудования и т.д.).

Все перечисленные задачи взаимосвязаны. Так, от выбора метода изготовления зависит точность размеров проводников и их электрические характеристики, от расположения печатных проводников – степень влияния их друг на друга и др.

Указанный комплекс задач называют топологическим проектированием ПП. Подробно он рассмотрен во многих литературных источниках.

6.6. Компоновка модулей верхних уровней.

Конструктивными модулями верхних уровней называют обычно блоки и шкафы (стойки) РЭС.

Блоком называется конструктивный модуль, который служит для электрического, механического и пространственного объединения ячеек, а также для защиты их от различного рода внешних воздействий.

Шкафом (стойкой) называется конструкция, объединяющая совокупность блоков и обеспечивающая их защиту от воздействий.

6.6.1. Общие положения и особенности задачи.

Суть задачи компоновки в данном случае состоит в проектировании пространственной подсистемы Sпр с учетом влияния на результат механической и тепловой подсистем будущей конструкции, т.е. с учетом ещё не полностью известных к этому моменту данных.

Рис. 6.16. Учёт влияний на компоновку.

Из общих соображений ясно, что необходимо в результате определить форму, размеры и взаимное положение всех элементов внутри блока и/или шкафа. Для этого необходимо установить совокупность принципов Ппр пространственного объединения, список элементов Гпр блока (шкафа), схему компоновки Θпр и компоновочные параметры Епр.

Очевидно, что все сказанное в разделе 6.3.1. для компоновки модулей нижних уровней справедливо и в данном случае. С одним лишь исключением. Исключение касается использования других априорно известных принципов компоновки. Наиболее часто встречаются следующие принципы:

р1 – объединение частей блока (шкафа) производится в пространстве;

р2 – группу элементов одинакового функционального назначения объединяют в единой зоне; так появились: - зона расположения основных элементов электрической схемы; - зона установки входных/выходных разъемов; - зона элементов связи с оператором (лицевая панель) и т.д.

р3 – ячейки внутри соответствующей зоны устанавливаются в строгом порядке, например, «одна к одной в пакете».

Кроме принципов компоновки появились и типовые схемы компоновки блоков и ячеек в блоке.

1-зона лицевой панели

2-зона установки ячеек

3-зона вх/вых разъемов

Рис. 6.17.Схемы компоновки блоков.

Рис. 6.18.Схемы компоновки ячеек в блоке.

Кроме указанных типовых принципов и схем компоновки используются в обоснованных случаях и другие; например, компоновка на «материнской» плате, компоновка под особый элемент (например, под электронно-лучевую трубку) и т.д.

6.6.2. Задачи компоновки блоков и шкафов.

С учетом установленных особенностей и используя материал параграфа 6.3.2., комплексную задачу компоновки можно представить следующим образом.

Рис. 6.19. Задачи компоновки блоков.

Особенность задачи состоит в том, что две из списка задач практически отсутствуют (перечень ячеек в блоке обычно известен и порядок расположения ячеек внутри блока соответствует функциональной схеме). Кроме того, электрическое объединение ячеек жгутами и кабелями рассматривается обычно отдельно от собственно задач компоновки.

Таким образом, современная постановка задачи компоновки блоков и шкафов сводится к задаче выбора одного типоразмера из множества известных, т.е. речь идет о задаче четвертого уровня сложности.

6.7. Унифицированные конструкции блоков и шкафов.

6.7.1. Общие требования к конструкции блоков.

Выбор варианта конструкции блока и компоновки субблоков в блоке, а также взаимное расположение других конструктивных элементов должны осуществляться, исходя из технических требований на конструирование, анализа определяющих факторов (надежность, ремонтопригодность, габариты, масса, тепловые режимы, условия эксплуатации и т.п.) разрабатываемого РЭС.

Блоки должны быть прямоугольной формы, за исключением блоков, устанавливаемых в специальных отсеках и только в технически обоснованных случаях, т.к. последнее исключает применение типовых технологических процессов, увеличивая стоимость и сроки освоения аппаратуры.

Наиболее трудоемки в процессе проектирования блоков – выбор рациональной компоновки субблоков в блоке, нормальных тепловых режимов, разработка или выбор базовой несущей конструкции, обеспечивающей первые два требования.

Действующая в настоящее время нормативно-техническая документация позволяет с минимальными затратами времени определить необходимую базовую несущую конструкцию в соответствии с заданным видом аппаратуры.

Элементы несущих конструкций должны обеспечивать надежное крепление субблоков с МКС и элементами электрической коммутации, минимальную массу, максимальное использование однотипных деталей и их унификацию.

Материалы и покрытия несущих конструкций должны выбираться в зависимости от условий эксплуатации аппаратуры. Элементы несущих конструкций изготавливаются литьем, штамповкой, прессованием или сваркой профильного материала.

Важную роль на этапе проектирования имеет правильный выбор межблочного электрического соединителя, который зависит от метода межблочной коммутации (петлевой, накидной или врубной) и несущей конструкции блока, определяемой видом аппаратуры.

Методы внутриблочной электрической коммутации, защиты блока от электромагнитных, механических воздействий, а также обеспечение теплового режима будут рассмотрены отдельно.