
- •Билет №1.
- •Типовые законы управления рулями ла.
- •2.Особенности синтеза су полетом статически неустойчивого упругого ла
- •Билет №2
- •1. Методы оценки показателей устойчивости контуров управления перегрузкой и угловой стабилизацией. Рекомендации по заданию их целевых значений.
- •2. Метод параллельного сближения.
- •Билет №3
- •1 Упрощенный метод оценки параметров автоколебаний в контурах угловой стабилизации.
- •2. Требование к помехоустойчивости су полетом ла
- •Билет №4
- •1. Требования к характеристикам технических средств и программам су полетом, их математические модели.
- •2.Понятие линии пути и профиля траектории
- •Билет №5
- •1. Структурная схема контура стабилизации бокового движения ла
- •Использование приведенных характеристик врд при моделировании динамики су полетом ла
- •Принцип действия и устройство пврд
- •Турбореактивный двигатель Принцип действия и устройство трд
- •Принцип действия и устройство ПуВрд
- •Билет №6
- •2. Метод пропорциональной навигации и его модификации.
- •Билет №7
- •1. Способы обеспечения устойчивости су в диапазоне частот упругих колебаний
- •2. Комплексирование измерителей высоты в су ла.
- •Билет №8
- •1. Кворум-фильтры.
- •2. Координированный разворот.
- •Билет №9
- •1. Двухканальные псевдолинейные фильтры.
- •2.Система самонастройки передаточных чисел контура управления ла.
- •Билет №10
- •1. Определение помехоустойчивости нелинейной су полетом.
- •2. Рулевой привод как объект регулирования и элемент су.
- •Билет №11
- •1. Особенности врд как объектов регулирования и элементов су.
- •2. Характеристика систем автономного управления, телеуправления и самонаведения.
- •Билет №12
- •1. Построение оптимальной барограммы маневра наборы высоты и скорости полета для ла, совершающего полет в атмосфере.
- •2. Комплекс сау ла. Состав и назначение систем комплексов.
- •Билет №13
- •1. Реализация оптимальной программы набора высоты и скорости для ла, совершающего полет в атмосфере.
- •2. Тактико-технические требования, предъявляемые к су полетом.
- •Билет №14
- •1. Адаптация управления набором высоты и скорости к реальным условиям полета, к характеристикам ла и его двигательной установки.
- •2. Способы управления угловым движением, движением центра масс ла.
- •Билет №15
- •1. Построение управления на участке снижения на малую высоту.
- •2. Обоснование системы допусков на основные характеристики элементов контуров управления ла с использованием детерминированных эквивалентов статистического моделирования.
- •Билет №16
- •1. Определение момента и параметров начала заключительного (переходного) участка выхода на малую высоту.
- •2. Особенности су полетом с бцвс.
- •Недостатки
- •Билет №17
- •1. Управление разворотом ла без просадки по высоте полета.
- •2. Рекомендуемый порядок синтеза алгоритмов стабилизации в каналах рыскания и крена.
- •Билет№19
- •1. Врд как объекты регулирования.
- •2. Обоснование параметров контуров управления ла, подлежащих контролю.
- •Билет 20.
- •1. Основное кинематическое тождество методов наведения.
- •2. Режекторные фильтры.
- •Билет 21.
- •1.Кинематические соотношения метода погони.
- •2.Структурная схема контура стабилизации продольного движения ла.
- •Билет 22.
- •1. Комплексирование измерителей в су ла.
- •Датчики высоты
- •2. Моделирование и отладка сложных систем управления ла.
- •Билет 23.
- •1. Особенности и порядок синтеза цифровых корректирующих устройств.
- •2. Роль су в эффективности использования ла.
- •Билет 24.
- •1. «Мгновенный» и «фактический» промах.
- •2. Особенности синтеза су полетом статически неустойчивого упругого ла.
Билет№19
1. Врд как объекты регулирования.
Всю математику системы РКС удобно отображать системой уравнений в отклонениях от номинальной программы.
В системе РКС в первом приближении учитывается динамика ТНА как звена 1-го порядка и, соответственно, регулятора.
τδ = 0.05 ÷ 0.2 с
ТТНА = 0.1 ÷ 0.3 с
Тпр = 0.02 ÷ 0.05 с
система была бы структурно неустойчива, если бы не было в УУ (Туs + 1) – дифференцирования.
ку может быть не ку, а реле.
δV ~ 5 ÷ 10 м/с
Релейная система работает вдвое точнее, но эта повышенная точность обеспечивается режимом автоколебаний, что отражается на работе двигательной установки. Релейные системы для крупных конструкций стараются не применять.
Воздушно-реактивный двигатель
Реактивный двигатель, в котором для сжигания горючего используется кислород, содержащийся в атмосферном воздухе. ВРД приводит в движение летательные аппараты (самолёты, вертолёты, самолёты-снаряды).
Динамика ВРД:
рабочее тело, поступает в двигатель со
скоростью полёта, а покидает его со
скоростью истечения реактивной струи
из сопла. Сила тяги в ВРД возникает в
результате истечения рабочих газов из
реактивного сопла.
,
P-сила
тяги; c-скорость
полёта;
ν-скорость
истечения реактивной струи; G-секундный
расход массы рабочего тела через
двигатель. ВРД
эффективен (создаёт тягу) только в
случае, когда c>,
чем больше эта разница, тем выше тяга
двигателя.
Для получения большой
скорости истечения газов из сопла
воздух, поступающий в камеру сгорания
ВРД, подвергается сжатию. В зависимости
от способа сжатия воздуха ВРД делятся
на турбокомпрессорные (ТРД), пульсирующие
(ПуВРД) и прямоточные (ПВРД).
Основные параметры характеризующие двигатели:
1. Тяга для двигателей прямой реакции / мощность для двигателей непрямой реакции. 2. Масса. 3. Габариты (входной диаметр и длина по оси). 4. Удельный расход топлива. (отношение расхода топлива за единицу времени к создаваемой двигателем тяге/мощности). 5. Расход воздуха. 6. Степень повышения полного давления. 7. Температура газа перед турбиной.
Турбокомпрессорные ВРД (ТРД) имеют компрессор с приводом от газовой турбины, что позволяет независимо от скорости полёта создавать сжатие воздуха, обеспечивающее большие скорости истечения газов из выходного (реактивного) сопла и большую силу тяги. ТРД широко применяется на самолётах, вертолётах, беспилотных самолётах-снарядах. ТРД можно устанавливать на катерах, гоночных автомобилях, аппаратах на воздушной подушке и др
Пульсирующий ВРД (ПуВРД) имеет входной диффузор (для сжатия воздуха под влиянием кинетической энергии набегающего потока), отделённый от камеры сгорания входными клапанами, и длинное цилиндрическое выходное сопло. Горючее и воздух подаются в камеру сгорания периодически. При сгорании смеси давление в камере повышается, так как клапаны на входе автоматически закрываются, а столб газов в длинном сопле обладает инерцией. Газы под давлением с большой скоростью вытекают из сопла, создавая силу тяги. К концу процесса истечения давление в камере сгорания падает ниже атмосферного, клапаны автоматически открываются и в камеру поступает свежий воздух, впрыскивается топливо; цикл работы двигателя повторяется. ПуВРД способен создавать тягу на месте и при небольших скоростях полёта. Когда клапаны закрыты, ПуВРД имеет большое аэродинамическое сопротивление по сравнению с другими типами ВРД, небольшую тягу и используется лишь для аппаратов со скоростью полёта меньше звуковой.
Схема пульсирующего воздушно-реактивного двигателя (ПуВРД):
1
— воздух;
2 — горючее;
3 — клапанная решётка;
4 — форсунки;
5 — свеча;
6 — камера сгорания;
7 — выходное (реактивное) сопло.
В прямоточном ВРД (ПВРД) во входном диффузоре воздух сжимается за счёт кинетической энергии набегающего потока воздуха. Процесс работы непрерывен, поэтому стартовая тяга у ПВРД отсутствует. ПВРД могут работать как на химическом (керосин, бензин и др.), так и на атомном горючем. Рабочий процесс ПВРД: 1-воздух, поступая со скоростью полёта во входное устройство двигателя, затормаживается, его кинетическая энергия преобразуется во внутреннюю энергию – его температура и давление повышаются. На выходе из входного устройства, при входе в камеру сгорания рабочее тело имеет максимальное на всём протяжении проточной части двигателя давление. 2-Сжатый воздух в камере сгорания нагревается за счёт окисления подаваемого в неё топлива, внутренняя энергия рабочего тела при этом возрастает. 3-Затем расширяясь в сопле, рабочее тело ускоряется и истекает со скоростью большей, чем скорость встречного потока, что и создаёт реактивную тягу.
Основные преимущества ПВРД: способность работать на значительно больших скоростях и высотах полёта, чем ТРД; большая экономичность по сравнению с жидкостными ракетными двигателями (ЖРД), так как в ПВРД используется кислород воздуха, а в ЖРД кислород вводится в виде одного из компонентов топлива, транспортируемого вместе с двигателем; отсутствие движущихся частей и простота конструкции. Главные недостатки ПВРД: отсутствие статической (стартовой) тяги, что требует принудительного старта; малая экономичность при дозвуковых скоростях полёта. Применение ПВРД наиболее эффективно для полёта с большими сверхзвуковыми скоростями. ПВРД со сверхзвуковой скоростью сгорания топлива (в камере сгорания) называется гиперзвуковым прямоточным воздушно-реактивным двигателем (ГПВРД). Его применение целесообразно на летательных аппаратах при скоростях полёта, соответствующих М = 5—6.
Схема устройства ПВРД на жидком топливе: 1. Встречный поток воздуха; 2. Центральное тело. 3. Входное устройство. 4. Топливная форсунка. 5. Камера сгорания. 6. Сопло. 7. Реактивная струя.
Области применения двигателей различных типов в зависимости от скорости полёта: H — высота полёта; М — число Маха; 1 — турбореактивные двигатели; 2 — турбореактивные двигатели с форсажной камерой; 3 — прямоточные воздушно-реактивные двигатели:
PS. Тягу можно менять за счет изменения давления рабочего тела, а также за счет изменения размеров критического и выходного сечений сопла (в случае регулируемого сопла).