
21.
Структура мегамира
Основными структурными элементами мегамира являются планеты и планетные системы; звезды и звездные системы, образующие галактики; системы галактик, образующие метагалактики.
Планеты — несамосветящиеся небесные тела, по форме близкие к шару, вращающиеся вокруг звезд и отражающие их свет. В силу близости к Земле наиболее изученными являются планеты Солнечной системы, двигающиеся вокруг Солнца по эллиптическим орбитам. К этой группе планет относится и наша Земля, расположенная от Солнца на расстоянии 150 млн. км.
Звезды — светящиеся (газовые) космические объекты, образующиеся из газово-пылевой среды (преимущественно водорода и гелия) в результате гравитационной конденсации. Звезды удалены друг от друга на огромные расстояния и тем самым изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется силой тяготения, создаваемой всеми звездами Галактики. Число звезд в Галактике — порядка триллиона. Самые многочисленные из них — карлики, массы которых примерно в 10 раз меньше массы Солнца. В зависимости от массы звёзды в процессе эволюции становятся либо белыми карликами, либо нейтронными звездами, либо черными дырами.
Белый карлик — это электронная постзвезда, образующаяся в том случае, когда звезда на последнем этапе своей эволюции имеет массу, меньшую 1,2 солнечной массы. Диаметр белого карлика равен диаметру нашей Земли, температура достигает около миллиарда градусов, а плотность — 10 т/см3, т.е. в сотни раз больше земной плотности.
Нейтронные звезды возникают на заключительной стадии эволюции звезд, обладающих массой от 1,2 до 2 солнечных масс. Высокие температура и давление в них создают условия для образования большого количества нейтронов. В этом случае происходит очень быстрое сжатие звезды, в ходе которого в наружных ее слоях начинается бурное протекание ядерных реакций. При этом выделяется так много энергии, что происходит взрыв с разбросом наружного слоя звезды. Внутренние же ее области стремительно сжимаются. Оставшийся объект и получил название нейтронной звезды, поскольку он состоит из протонов и нейтронов. Нейтронные звезды также называют пульсарами.
Черные дыры — это звезды, находящиеся на заключительном этапе своего развития, масса которых превышает 2 солнечные массы, и имеющие диаметр от 10 до 20 км. Теоретические расчеты показали, что они обладают гигантской массой (1015 г) и аномально сильным гравитационным полем. Свое название они получили потому, что не обладают свечением, а за счет своего гравитационного поля захватывают из пространства все космические тела и излучение, которые не могут выйти из них обратно, они как бы проваливаются в них (затягиваются, как в дыру). Из-за сильной гравитации никакое захваченное материальное тело не может выйти за пределы гравитационного радиуса объекта, и поэтому они кажутся наблюдателю «черными».
Звездные системы (звездные скопления) — группы звезд, связанные между собой силами тяготения, имеющие совместное происхождение, сходный химический состав и включающие в себя до сотен тысяч отдельных звезд. Существуют рассеянные звездные системы, например Плеяды в созвездии Тельца. Такие системы не имеют правильной формы. В настоящее время известно более тысячи звездных систем. Кроме того, к звездным системам относятся шаровые звездные скопления, насчитывающие в своем составе сотни тысяч звезд. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время ученым известно около 150 шаровых скоплений.
Галактики — совокупности звездных скоплений. Понятие «галактика» в современной интерпретации означает огромные звездные системы. Этот термин (от греч. «молоко, молочный») был введен в обиход для обозначения нашей звездной системы, представляющей собой тянущуюся через все небо светлую полосу с молочным оттенком и поэтому названную Млечным Путем.
Условно по внешнему виду галактики можно разделить на три вида. Кпервому (около 80%) относятся спиральные галактики. У этого вида отчетливо наблюдаются ядро и спиральные «рукава». Второй вид (около 17%) включает эллиптические галактики, т.е. такие, которые имеют форму эллипса. К третьему виду (примерно 3%) относятся галактики неправильной формы, которые не имеют отчетливо выраженного ядра. Кроме того, галактики различаются размерами, числом входящих в них звезд и светимостью. Все галактики находятся в состоянии движения, причем расстояние между ними постоянно увеличивается, т.е. происходит взаимное удаление (разбегание) галактик друг от друга.
Наша Солнечная система принадлежит к галактике Млечного Пути, включающей не менее 100 млрд. звезд и поэтому относящейся к разряду гигантских галактик. Она имеет сплюснутую форму, в центре которой находится ядро с отходящими от него спиральными «рукавами». Диаметр нашей Галактики составляет около 100 тыс., а толщина — 10 тыс. световых лет. Соседней с нами является галактика Туманность Андромеды.
Метагалактика — система галактик, включающая все известные космические объекты.
Поскольку мегамир имеет дело с большими расстояниями, то для измерения этих расстояний разработаны следующие специальные единицы:
световой год — расстояние, которое проходит луч света в течение одного года со скоростью 300 000 км/с, т.е. световой год составляет 10 трлн км;
астрономическая единица — это среднее расстояние от Земли до Солнца, 1 а.е. равна 8,3 световым минутам. Это значит, что солнечные лучи, оторвавшись от Солнца, достигают Земли через 8,3 мин;
парсек — единица измерения космических расстояний внутри звездных систем и между ними. 1пк — 206 265 а.е., т.е. приблизительно равен 30 трлн км, или 3,3 световым годам.
22.
Звезды
Имеется большое количество аргументов, что звёзды образуются путём конденсации межзвёздной среды. Путём наблюдений удалось определить, что звёзды возникали в разное время и возникают по сей день.
Главной проблемой в эволюции звёзд является вопрос о возникновении их энергии, благодаря которой они светятся и излучают огромное количество энергии. Ранее выдвигалось много теорий, которые были призваны выявить источники энергии звёзд. Считали, что непрерывным источником звёздной энергии является непрерывное сжатие. Этот источник конечно хорош, но не может поддерживать соответствующее излучение в течении долгого времени. В середине XX века был найден ответ на этот вопрос. Источником излучения является термоядерные реакции синтеза. В результате этих реакций водород превращается в гелий, а освобождающаяся энергия проходит сквозь недра звезды, трансформируется и излучается в мировое пространство (стоит отметить, что чем больше температура, тем быстрее идут эти реакции; именно поэтому горячие массивные звёзды быстрее сходят с главной последовательности).
Теперь представим возникновение звезды…
Начало конденсироваться облако межзвёздной газопылевой среды. Из этого облака образуется довольно плотный газовый шар. Давление внутри шара пока не в силах уравновесить силы притяжения, поэтому он будет сжиматься (возможно в это время вокруг звезды образуются сгустки с меньшей массой, которые в итоге превращаются в планеты). При сжатии температура повышается. Таким образом, звёзда постепенно садится на главную последовательность. Затем давление газа внутри звезды уравновешивает притяжение и протозвёзда превращается в звезду.
Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.
Превращение водорода в гелий происходит только в центральных областях звезды. В наружных слоях содержание водорода остаётся практически неизменным. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается и ядро звёзды начинает сжиматься, а оболочка разбухать. Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности).
После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, постепенно остывая она превратится в белый карлик. Постепенно остывая они превращаются в невидимые чёрные карлики. Чёрные карлики - это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.
Если масса звезды от 1,2 до 2,5 солнечной, то такая звёзда взорвётся. Этот взрыв называется вспышкой сверхновой. Вспыхнувшая звезда за несколько секунд увеличивает свою светимость в сотни миллионов раз. Такие вспышки происходят крайне редко. В нашей Галактике взрыв сверхновой происходит, примерно, раз в сто лет. После подобной вспышки остаётся туманность, которая имеет большое радиоизлучение, а также очень быстро разлетается, и так называемая нейтронная звезда (об этом чуть позже). Помимо огромного радиоизлучения такая туманность будет ещё источником рентгеновского излучения, но это излучение поглощается атмосферой земли, поэтому может наблюдаться лишь из космоса.
Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10 км, а плотность её в таком состоянии составляет 1017 кг/м3, что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется «НЕЙТРОННОЙ». Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.
Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары. Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.
Пульсар может быть обнаружен только для нас условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.
Если масса звезды превышает 2,5 солнечные, то в конце своего существования она как бы обрушится в себя и будет раздавлена собственным весом. В считанные секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой».
Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение.
Виды звезд
Во Вселенной существуем множество различных звезд. Большие и маленькое, горячие и холодные, заряженные и не заряженными. Попробуем дать в этой статье классификацию основных видов звезд.
Одной из классификаций звезд является спектральная классификация. Согласно этой классификации звезды относят в тот или иной класс согласно их спектру. Спектральная классификация звезд служит многим задачам звездной астрономии и астрофизики. Качественное описание наблюдаемого спектра позволяет оценить важные астрофизические характеристики звезды, такие как эффективная температура ее поверхности, светимость и, в отдельных случаях, особенности химического состава.
Некоторые звезды не попадают не в один из классов этой таблицы. Такие звезды называют пекулярными. Их спектры не укладываются в температурную последовательность O-B-A-F-G-K-M. Хотя, зачастую такие звезды представляют собой определенные эволюционные стадии вполне нормальных звезд, либо представляют звезды, не совсем характерные для ближайших окрестностей Солнца (бедные металлами звезды, такие как звезды шаровых скоплений и гало Галактики). В частности к звездам с пекулярными спектрами относятся звезды с различными особенностями химического состава, что проявляется в усилении или ослаблении спектральных линий некоторых элементов. Виды звезд
Хорошо разобраться в классификации звезд позволяет диаграмма Герцшпрунга - Рассела. Она показывает зависимость между абсолютной звездной величиной, светимостью, спектральным классом и температурой поверхности звезды. Неожиданным является тот факт, что звезды на этой диаграмме располагаются не случайно, а образуют хорошо различимые участки. Диаграмма предложена в 1910 независимо Э. Герцшпрунгом и Г. Расселом. Она используется для классификации звезд и соответствует современным представлениям о звездной эволюции.
Большая часть звезд находится на так называемой главной последовательности. Существование главной последовательности связано с тем, что стадия горения водорода составляет ~90% времени эволюции большинства звезд: выгорание водорода в центральных областях звезды приводит к образованию изотермического гелиевого ядра, переходу к стадии красного гиганта и уходу звезды с главной последовательности. Относительно краткая эволюция красных гигантов приводит, в зависимости от их массы, к образованию белых карликов, нейтронных звезд или черных дыр.
Находясь на различных стадиях своего эволюционного развития звезды подразделяются на нормальные звезды, звезды карлики, звезды гиганты. Нормальные звезды, это и есть звезды главной последовательности. К таким, например, относится наше Солнце. Иногда такие нормальные звезды называются желтыми карликами.
Звезда могут наблюдаться красным гигантом в момент звездообразования и на поздних стадиях развития. На ранней стадии развития звезда излучает за счет гравитационной энергии, выделяющейся при сжатии, до того момента пока сжатие не будет остановлено начавшейся термоядерной реакцией. На поздних стадиях эволюции звезд, после выгорания водорода в их недрах, звезды сходят с главной последовательности и перемещаются в область красных гигантов и сверхгигантов диаграммы Герцшпрунга - Рассела: этот этап длится ~ 10% от времени «активной» жизни звезд, то есть этапов их эволюции, в ходе которых в звездных недрах идут реакции нуклеосинтеза.
Звезда гигант имеет сравнительно низкую температура поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.
Звезды карлики являются противоположностью гигантов и включают в себя несколько различных подвидов:
* Белый карлик - проэволюционировавшие звезды с массой не превышающей 1,4 солнечных массы, лишенные собственных источников термоядерной энергии. Диаметр таких звезд может быть в сотни раз меньше солнечного, а потому плотность может быть в 1 000 000 раз больше плотности воды.
* Красный карлик - маленькая и относительно холодная звезда главной последовательности, имеющая спектральный класс М или верхний К. Они довольно сильно отличаются от других звезд. Диаметр и масса красных карликов не превышает трети солнечной (нижний предел массы - 0,08 солнечной, за этим идут коричневые карлики).
* Коричневый карлик - субзвездные объекты с массами в диапазоне 5-75 масс Юпитера (и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
* Субкоричневые карлики или коричневые субкарлики - холодные формирования, по массе лежащие ниже предела коричневых карликов. Их в большей мере принято считать планетами.
* Черный карлик - остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
Кроме перечисленных, существует еще несколько продуктов эволюции звезд:
* Нейтронная звезда. Звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Плотность таких звезды может достигать 1000 000 000 000 плотностей воды. А магнитное поле во столько же раз больше магнитного поля земли. Такие звезды состоят в основном из нейтронов, плотно сжатых гравитационными силами. Часто такие звезды представляют собой пульсары.
* Новая звезда. Звезды, светимость которых внезапно увеличивается в 10000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызываю вспышку светимости.
* Сверхновая звезда это звезда, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
* Двойная звезда - это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс. Иногда встречаются системы из трех и более звезд, в таком общем случае система называется кратной звездой. В тех случаях, когда такая звездная система не слишком далеко удалена от Земли, в телескоп удается различить отдельные звезды. Если же расстояние значительное, то понять, что перед астрономами двойная звезда удается только по косвенным признакам - колебаниям блеска, вызываемым периодическими затмениями одной звезды другою и некоторым другим.
Многообразие звезд во Вселенной неисчерпаемо, и возможно существуют еще звезды или продукты их эволюции, которые не вошли в эту классификацию.
23.
Первый концептуальный уровень - Учение о составе вещества. Сложилась в середине 17 века. На этом уровне исследуются свойства веществ в зависимости от их химического состава, определяют их элемент. Первые научные определения научных элементов дал Бойль. Он полагал, что в химическим элементом является простое тело, как предел химического разложения веществ. Первым химическим элементом, полученным в чистом виде, можно считать фосфор, который в 1670 году получил Х. Бранг. Французский физик и химик Лавуазье осуществил первую попытку систематизации химических элементов. Д.И. Менделеев на основе открытой им периодической закономерности создал ПСХЭ (периодическую систему химических элементов). По Менделееву химический элемент - совокупность атомов, обладающих одинаковым атомным весом. В современных условиях понятие химический элемент - вещество, все атомы которого обладают одинаковым зарядом ядра (хотя и различных по массе). Свойства химических элементов зависит от атомного номера определятся зарядом ядра. Заряд ядра определяется количеством протонов, количеством нейтронов может быть различной у атомов одного итого же химического элемента, тем самым атомный вес представляет собой среднее арифметическое величины массы изотопов. В периодической системе по горизонтали увеличивается неметаллические свойства веществ, а по вертикали увеличиваются металлические свойства, а также увеличивается неустойчивость атомов химического элемента. Таким образом, свойства химических элементов зависят от атомного номера, определяемого зарядом ядра. Заряд ядра определяется количеством протонов в ядре атома, при том, что количество нейтронов может быть различным у атомов одного и того же химического элемента, тем самым атомный вес представляет собой среднее арифметическое величин масс изотопов. Изотопы - разновидности атомов, которые имеют одинаковый заряд ядра, но отличается по своей массе. В периодической системе по горизонтали увеличиваются неметаллические свойства, а по вертикали увеличиваются металлические свойства, а также увеличивается неустойчивость атомов химического элемента. Самый распространённый химический элемент Вселенной - это водород. Самый распространённый химический элемент на Земле это кислород , на его долю приходится 47% массы земной коры. Морские пресные воды на 89% состоит из кислорода. А в теле человека углерод занимает более 21% процента элементного состава. Кремний занимает второе место (30%) в земной коре.
А́том (от др.-греч. ἄτομος — неделимый) — наименьшая химически неделимая часть химического элемента, являющаяся носителем его свойств]. Атом состоит из атомного ядра и электронов. Ядро атома состоит из положительно заряженных протонов и незаряженных нейтронов. Если число протонов в ядре совпадает с числом электронов, то атом в целом оказывается электрически нейтральным. В противном случае он обладает некоторым положительным или отрицательным зарядом и называется ионом. Атомы классифицируются по количеству протонов и нейтронов в ядре: количество протонов определяет принадлежность атома некоторому химическому элементу, а число нейтронов —изотопу этого элемента.
Моле́кула (новолат. molecula, уменьшительное от лат. moles — масса) — электрически нейтральная частица, состоящая из двух или более связанных ковалентными связями, наименьшая частица химического вещества, обладающая всеми его химическими свойствами].
Химический элемент — совокупность атомов с одинаковым зарядом ядра и числом протонов, совпадающим с порядковым (атомным) номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева
Хими́ческое соедине́ние — сложное вещество, состоящее из химически связанных атомов двух или нескольких элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат). Инертные (благородные) газы и атомарный водород нельзя считать химическими соединениями.
Закон постоянства состава (Ж.Л. Пруст, 1801—1808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.
Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II)записывают в виде FeO (вместо более точной формулы Fe1-xO).
Периодический закон — фундаментальный закон природы, открытый Д. И. Менделеевым в 1869 году при сопоставлении свойств известных в то время химических элементови величин их атомных масс. Периодический закон был сформулирован Д. И. Менделеевым в следующем виде (1871): «свойства простых тел, а также формы и свойства соединений элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
С развитием атомной физики и квантовой химии Периодический закон получил строгое теоретическое обоснование. Благодаря классическим работам Й. Ридберга (1897), А. Ван-ден-Брука (1911), Г. Мозли (1913) был раскрыт физический смысл порядкового (атомного) номера элемента. Позднее была создана квантово-механическая модель периодического изменения электронного строения атомов химических элементов по мере возрастания зарядов их ядер (Н. Бор, В. Паули, Э. Шрёдингер, В. Гейзенберг и др.).
В настоящее время Периодический закон Д. И. Менделеева имеет следующую формулировку: «свойства химических элементов, а также формы и свойства образуемых ими простых веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов».
Особенность Периодического закона среди других фундаментальных законов заключается в том, что он не имеет выражения в виде математического уравнения. Графическим (табличным) выражением закона является разработанная Менделеевым Периодическая система элементов.
Периодический закон универсален для Вселенной: как образно заметил известный русский химик Н. Д. Зелинский, Периодический закон явился «открытием взаимной связи всех атомов в мироздании».
24.
Ква́нтовое число́ в квантовой механике — численное значение какой-либо квантованной переменной микроскопического объекта (элементарной частицы, ядра, атома и т. д.), характеризующее состояние частицы. Задание квантовых чисел полностью характеризует состояние частицы.
Некоторые
квантовые числа связаны с движением в
пространстве и характеризуют
пространственное распределение волновой
функции частицы.
Это, например, радиальное
(главное) (
), орбитальное (
)
и магнитное(
)
квантовые числа электрона в атоме,
которые определяются как число узлов
радиальной волновой функции, значение
орбитального углового момента и его
проекция на заданную ось, соответственно.
Некоторые другие квантовые числа никак не связаны с перемещением в обычном пространстве, а отражают «внутреннее» состояние частицы. К таким квантовым числам относится спин и его проекция. В ядерной физике вводится также изоспин, а в физике элементарных частиц появляется цвет, очарование, прелесть (или красота) и истинность.
Принцип Паули Состояние каждого электрона в атоме характеризуется четырьмя квантовыми числами: 1. Главное квантовое число n (n = 1, 2 ...). 2. Орбитальное (азимутальное) квантовое число l (l = 0, 1, 2, ... n-1). 3. Магнитное квантовое число m (m = 0, +/-1, +/-2, +/-... +/-l). 4. Спиновое квантовое число ms (ms = +/-1/2 ). Для одного фиксированного значения главного квантового числа n существует 2n2 различных квантовых состояний электрона. Один из законов квантовой механики, называемый принципом Паули, утверждает: В одном и том же атоме не может быть двух электронов, обладающих одинаковым набором квантовых чисел, (т.е. не может быть двух электронов в одинаковом состоянии). Принцип Паули дает объяснение периодической повторяемости свойств атома, т.е. периодической системе элементов Менделеева.
Или вот еще:
При́нцип Па́ули (принцип запрета) — один из фундаментальных принципов квантовой механики, согласно которому два и более тождественных фермиона (частиц с полуцелым спином) не могут одновременно находиться в одном квантовом состоянии.
Принцип был сформулирован для электронов Вольфгангом Паули в 1925 г. в процессе работы над квантомеханической интерпретацией аномального эффекта Зеемана и в дальнейшем распространён на все частицы с полуцелым спином. Полное обобщённое доказательство принципа было сделано им в 1940 г. в рамках релятивистской квантовой механики: волновая функция системы фермионов является антисимметричной относительно их перестановок, поведение систем таких частиц описывается статистикой Ферми — Дирака.
Принцип Паули можно сформулировать следующим образом: в пределах одной квантовой системы в данном квантовом состоянии может находиться только одна частица, состояние другой должно отличаться хотя бы одним квантовым числом.
В
статистической физике принцип Паули
иногда формулируется в терминах чисел
заполнения: в системе одинаковых частиц,
описываемых антисимметричной волновой
функцией, числа заполнения могут
принимать лишь два значения
Принцип минимума энергии определяет порядок заселения атомных орбиталей, имеющих различные энергии. Согласно принципу минимума энергии, электроны занимают в первую очередь орбитали, имеющие наименьшую энергию. Энергия подуровней растет в ряду:
1s <
2s <
2 p <
3s <
3p <
4s <
3d <
4p <
5s <
4d <
5p <
6s <
4f
5d <
6p <
7s <
5f
6d...
Атом водорода имеет один электрон, который может находиться на любой орбитали. Однако, в основном состоянии он должен занимать 1s-орбиталь, имеющую самую низкую энергию.
В атоме калия последний девятнадцатый электрон может заселить либо 3d-, либо 4s-орбиталь. В соответствии с принципом минимума энергии, электрон занимает 4s-орбиталь, что подтверждается экспериментом.
Следует обратить внимание на неопределенность записи 4f 5d и 5f 6d. Оказалось, что у одних элементов более низкую энергию имеет 4f-подуровень, а у других - 5d-подуровень. То же самое наблюдается для 5f- и 6d-подуровней.
25.
Периоди́ческая систе́ма хими́ческих элеме́нтов (табли́ца Менделе́ева) — классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона, установленного русским химиком Д. И. Менделеевым в 1869 году. Её первоначальный вариант был разработан Д. И. Менделеевым в 1869—1871 годах и устанавливал зависимость свойств элементов от их атомного веса (по-современному, от атомной массы). Всего предложено несколько сотен вариантов изображения периодической системы (аналитических кривых, таблиц, геометрических фигур и т. п.). В современном варианте системы предполагается сведение элементов в двумерную таблицу, в которой каждый столбец (группа) определяет основные физико-химические свойства, а строки представляют собой периоды, в определённой мере подобные друг другу.
Строение атома
1. Ядро и электроны
Развитие естествознания на границе XIX-XX веков показало, что помимо химических превращений существует целый ряд процессов, в которых атомы выступают как сложные объекты, состоящие из положительно заряженной части - ядра и отрицательно заряженных электронов, суммарный заряд которых в точности компенсирует заряд ядра. В результате работ английского физика Дж. Дж. Томсона и американского физика Р.С. Малликена было установлено, что электрон имеет массу 9,1•1031 кг, или 1/1837 массы атома водорода, и заряд 1,6•10 19 Кл. Основная масса атома сосредоточена в ядре, которое занимает очень малую часть его объема: диаметр ядра порядка 1СГ14 м, он составляет лишь около 10 4 диаметра атома. Наглядно это соотношение размеров можно представить себе, если увеличить атом в 1011 раз: тогда ядро диаметром 1 мм разместится внутри атома диаметром 10 метров!
Позднее было показано, что атомные ядра состоят из положительно заряженных частиц - протонов и незаряженных частиц - нейтронов. Протон имеет заряд, равный заряду электрона, но со знаком плюс, его масса практически равна массе нейтрона. Отметим, что в химии принято выражать заряды ионов в единицах заряда электрона с соответствующим знаком, например Н+, Mg2+, СГ.
26.
Виды химической связи
В настоящее время все виды химической связи делят ковалентную, ионную, донорно-акцепторную, ван-дер-ваальсову, водородную, металлическую.
Ковалентная связь образуется, когда два атома могут «обобщить» электроны:
А . + В . → А:В
Ионная связь образуется, когда "обмен "становится настолько неравными, что электрон отрывается от своего атомаА и полностью переходит к атому B, в результате чего образуется пара ионов:
А . + В . → А+ :В-
Полярная ковалентная связь
Если нет такого понятия, как "абсолютная ионная "связь, может быть есть полностью ковалентная? Ответ "да". Это случай, когда два ядра притягивают электрон с равным усилием. Это положение гарантируется для гомоядерных двухатомных молекул - молекул, состоящих из двух одинаковых атомов. Таким образом, в Cl2, O2, H2 электроны поделены между двумя одинаковыми атомами поровну. В таких молекулах, в центр положительного заряда, в точности совпадает центром отрицательного заряда - по середине между двумя ядрами. Связывающие электроны находятся в пространстве между связываемыми атомами.
Особенностью ковалентной связи является также ее поляризуемость. Если молекула состоит из двух атомов, которые связаны полярной связью, то такая молекула является полярной молекулой, т.е. представляет собойдиполь.
Донорно-акцепторная связь
Другой тип химической связи - донорно-акцепторная. Различают обменный и донорно-акцепторный механизм образования связи. Ковалентная связь, образующаяся по донорно-акцепторному механизму (т.е. за счет пары электронов одного из атомов), называется дoнорно-акцeпторной. Так рассмотренный выше пример с LiF -есть пример донорно-акцептороной связи.
А : + В → А:В
Межмолекулярное взаимодействие - взаимодействие молекул между собой, не приводящее к разрыву или образованию новых химических связей. В их основе, как и в основе химической связи, лежат электрические взаимодействия.
Ван-дер-ваальсовы силы
Силы Ван-дер-Ваальса включают все виды межмолекулярного притяжения и отталкивания (взаимодействие молекул между собой). Они получили название в честь Я.Д. Ван-дер-Ваальса, который первым принял во внимание межмолекулярные взаимодействия для объяснения свойств реальных газов и жидкостей.
Основу ван-дер-ваальсовых сил также составляют кулоновские силы взаимодействия между электронами и ядрами одной молекулы и ядрами и электронами другой. На определенном расстоянии между молекулами силы притяжения и отталкивания уравновешивают друг друга, и образуется устойчивая система.
Рис.1 Ван-дер-ваальсовы силы
Ван-дер-ваальсовы силы заметно уступают любому виду химической связи. Например, силы, удерживающие атомы хлора в молекуле хлора почти в десять раз больше, чем силы, связывающие молекулы Cl2 между собой. Но без этого слабого межмолекулярного притяжения нельзя получить жидкий и твердый хлор.