Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Обыкновенные-диф.ур-ния.docx
Скачиваний:
22
Добавлен:
23.09.2019
Размер:
1.35 Mб
Скачать

70

Оглавление

2. Дифференциальные уравнения 2-го порядка 25

3. Линейные уравнения высших порядков 52

4. Системы обыкновенных дифференциальных уравнений 57

1.1. Обыкновенные дифференциальные уравнения. Основные понятия

Определение 1. Обыкновенным дифференциальным уравнением n-го порядка для функции y аргумента x называется соотношение вида

, (1.1)

где F – заданная функция своих аргументов. В названии этого класса математических уравнений термин «дифференциальные» подчеркивает, что в них входят производные (функции, образованные как результат дифференцирования); термин «обыкновенные» говорит о том, что искомая функция зависит только от одного действительного аргумента.

Обыкновенное дифференциальное уравнение может не содержать в явном виде аргумент x, искомую функцию и любые её производные, но старшая производная обязана входить в уравнение n-го порядка. Например,

а) – уравнение первого порядка;

б) – уравнение третьего порядка.

При написании обыкновенных дифференциальных уравнений часто используются обозначения производных через дифференциалы:

в) – уравнение второго порядка;

г) – уравнение первого порядка, образующее после деления на dx эквивалентную форму задания уравнения: .

Определение 2. Функция называется решением обыкновенного дифференциального уравнения, если при подстановке в него оно обращается в тождество. Например, уравнение 3-го порядка

имеет решение .

Найти тем или иным приёмом, например, подбором, одну функцию, удовлетворяющую уравнению, не означает решить его. Решить обыкновенное дифференциальное уравнение – значит найти все функции, образующие при подстановке в уравнение тождество. Для уравнения (1.1) семейство таких функций образуется с помощью произвольных постоянных и называется общим решением обыкновенного дифференциального уравнения n-го порядка, причём число констант совпадаёт с порядком уравнения: Общее решение может быть явно не разрешено относительно y(x): В этом случае решение принято называть общим интегралом уравнения (1.1). Например, общим решением дифференциального уравнения является следующее выражение:

,

причём второе слагаемое может быть записано и как , так как произвольная постоянная , может быть заменена новой произвольной постоянной .

Придавая некоторые допустимые значения всем произвольным постоянным в общем решении или в общем интеграле, получаем определённую функцию, уже не содержащую произвольных констант. Эта функция называется частным решением или частным интегралом уравнения (1.1). Для отыскания значений произвольных констант, а следовательно, и частного решения, используются различные дополнительные условия к уравнению (1.1). Например, могут быть заданы так называемые начальные условия при :

. (1.2)

В правых частях начальных условий (1.2) заданы числовые значения функции и производных, причём общее число начальных условий равно числу определяемых произвольных констант.

Задача отыскания частного решения уравнения (1.1) по начальным условиям называется задачей Коши.

1.2. Обыкновенные дифференциальные уравнения 1-го порядка

Обыкновенное дифференциальное уравнение 1-го порядка ( ) имеет вид: или (если его удаётся разрешить относительно производной) . Общее решение или общий интеграл уравнения 1-го порядка содержат одну произвольную постоянную. Единственное начальное условие для уравнения 1-го порядка позволяет определить значение константы из общего решения или из общего интеграла. Таким образом можно найти частное решение, т.е. задача Коши будет решена. Вопрос о существовании и единственности решения задачи Коши является одним из центральных в общей теории обыкновенных дифференциальных уравнений. Для уравнения 1-го порядка, в частности, справедлива следующая теорема, принимаемая здесь без доказательства.

Теорема. Если в уравнении функция и её частная производная непрерывны в некоторой области D плоскости XOY и в этой области задана точка , то существует (и притом единственное) решение , удовлетворяющее как уравнению , так и начальному условию .

Геометрически общее решение уравнения 1-го порядка представляет собой семейство кривых на плоскости XOY, не имеющих общих точек и отличающихся друг от друга одним параметром – значением константы C. Эти кривые называются интегральными кривыми для данного уравнения. Интегральные кривые уравнения обладают очевидным геометрическим свойством: в каждой точке тангенс угла наклона касательной к кривой равен значению правой части уравнения в этой точке: . Другими словами, уравнение задаёт на плоскости XOY поле направлений касательных к интегральным кривым.

Замечание: Необходимо отметить, что к уравнению приводится уравнение и так называемое уравнение в симметрической форме .