
- •1. Область применения и номенклатура металлических конструкций.
- •2. Конструктивные схемы колонн, типы сечений
- •3. Конструирование стержня колонны при центральном сжатии.
- •4. Достоинства и недостатки металлических конструкций.
- •5. Соединение поясов металлических балок со стенками.
- •6. Нагрузки, действующие на подкрановые конструкции
- •7. Требования, предъявляемые к металлическим конструкциям.
- •8. Расчет листового настила балочной клетки.
- •9. Виды и конструктивные решения сечений подкрановых балок
- •10. Расчет металлических конструкций по допускаемым напряжениям.
- •11. Опорные узлы подкрановых балок
- •12. Конструирование металлических балок с изменением сечения по длине балки.
- •13. Расчет металлических конструкций по предельным состояниям.
- •14. Определение расчетных усилий в элементах фермы.
- •16. Нагрузки и воздействия. Классификация нагрузок и их сочетаний.
- •17. Особенности расчета подкрановых балок
- •18. Конструирование подкрановых балок.
- •19. Материалы, применяемые в металлических конструкциях.
- •К определению механических характеристик металла:
- •20. Конструктивные схемы связей.
- •Связи между колоннами
- •Связи по покрытию
- •21. Покрытия по прогонам.
- •22. Наклеп и старение стали.
- •Диаграммы деформирования стали при повторном нагружении:
- •23. Расчет стыковых сварных соединений.
- •24. Особенности расчета стропильных ферм.
- •25. Работа стали на растяжение. Диаграмма растяжения стали.
- •26. Определение площади сечения элементов металлических ферм и подбор сечения по сортаменту.
- •29. Расчет и конструирование стержня решетчатых колонн.
- •30. Конструирование базы решетчатых колонн.
- •32. Расчет и конструирование стержня сплошных колонн при внецентренном сжатии.
- •33. Конструирование базы колонны сплошного сечения при внецентренном сжатии.
- •34. Влияние температуры на механические свойства стали. Усталость металла.
- •35. Расчет на прочность по предельному состоянию стальных изгибаемых балок при одновременном действии моментов и поперечных сил.
- •36. Конструирование и расчет болтовых соединений.
- •37. Работа стали на сжатие. Проблема устойчивости.
- •38. Расчет внецентренно -сжатых и сжато-изогнутых металлических стержней.
- •39. Конструирование сжатых элементов металлических ферм.
- •40. Сварные соединения. Виды сварки. Общие характеристики.
- •41. Расчет сварных соединений при действии моментов.
- •42. Конструирование стыков разрезных балок.
- •43. Компоновка поперечной рамы, выбор конструктивной схемы.
- •44. Общие сведения и расчет болтовых и заклепочных соединений.
- •45. Конструирование узлов металлических ферм (узел сопряжения элементов решетки).
- •Тяжелые фермы
- •46. Узел крепления подкрановых балок к колонне.
- •47. Типовых схемы стропильных ферм.
- •48. Укрупнительный стык отправочных элементов стропильной фермы.
- •49. Расчетная длина сжатых стержней стропильных ферм.
- •50. Расчет стержня внецентренно сжатых колонн сквозного сечения.
- •51. Конструирование сопряжения верхней и нижней части ступенчатой колонны одноэтажного промышленного здания.
- •52. Виды баз колонн и их конструирование.
- •53. Связи в производственных зданиях.
- •Связи между колоннами
- •Связи по покрытию
- •54. Конструирование узла крепления подкрановых балок к колонне.
- •55. Унифицированные типовые схемы стропильных ферм.
- •56. Расчет опорной плиты и анкерных болтов внецентренно сжатой колонны.
- •57. Конструирование раздельной базы внецентренно сжатых колонн.
- •58. Определение расчетных длин колонн в плоскости и из плоскости поперечной рамы одноэтажного промышленного здания.
- •59. Статический расчет поперечной рамы одноэтажного промышленного здания на ветровые нагрузки.
- •60. Конструирование базы решетчатой колонны.
- •61. Расчет и конструирование опорного столика при шарнирном сопряжении ригеля с колонной.
- •62. Расчет и конструирование опорного столика при жестком сопряжении ригеля с колонной.
- •63. Учет пространственной работы поперечных рам.
- •1 . Пространственная работа каркаса при отсутствии жесткой кровли
- •2. Пространственная работа каркаса при жесткой кровле
- •3. Пространственная работа каркаса многопролетных рам
- •64. Особенности работы поперечных рам одноэтажного промышленного здания.
- •65. Расчет стыкового соединения с двумя накладками.
- •66. Нагрузки, действующие на рамы.
- •67. Конструирование оголовка колонн и опирание балок сверху.
- •68. Последовательность статического расчета рам.
- •69. Состав каркаса и его конструктивные схемы.
- •70. Типы подкрановых балок и тормозных конструкций.
- •71. Конструкции покрытия (прогонные, беспрогонные).
- •72. Прогоны сплошного и решетчатого сечения. Схемы, расчет.
- •73. Связи по колоннам, связи по покрытию.
- •Связи между колоннами
- •Связи по покрытию
- •74. Последовательность статического расчета рамы.
- •75. Состав каркаса и его конструктивные схемы.
- •76. Нагрузки, действующие на рамы.
- •77. Особенности расчета металлических конструкций каркаса при усилении.
- •78. Обследование и методы диагностики металлических конструкций.
- •79. Подбор сечения подкрановых балок.
- •80. Способы увеличения несущей способности металлических конструкций.
- •81. Узлы опирания подкрановых балок.
- •82. Фонари. Схемы. Расчет.
9. Виды и конструктивные решения сечений подкрановых балок
Типы сечения подкрановых балок зависят от нагрузки, пролета и режима работы кранов. При пролете 6 м и кранах грузоподъемностью до 50 т обычного режима работы применяют прокатные двутавры, усиленные для восприятия горизонтальных сил листом или уголками, либо сварные двутавры несимметричного сечения. Для больших пролетов и грузоподъемностей кранов применяют сварные двутавровые балки с горизонтальной тормозной конструкцией.
Для снижения расхода стали сварные балки иногда проектируют из двух марок стали: стенку - из малоуглеродистой, пояса - из низколегированной.
Клепаные балки тяжелее сварных и более трудоемки в изготовлении. Однако благодаря более мощному верхнему поясу, состоящему из уголков и горизонтальных листов, а также из-за отсутствия сварочных напряжений, большей податливости соединения поясов со стенкой и распределения давления пояса на большую длину такие балки более долговечны. Поэтому в зданиях заводов черной металлургии с кранами весьма тяжелого режима работы клепаные балки применяют в виде исключения и в настоящее время.
Применение высокопрочных болтов можно рекомендовать при замене ослабленных заклепок и усилении клепаных балок в действующих цехах. При пролете балок 6 м и кранах легкого и среднего режимов работы Q до 50 т для восприятия горизонтальных поперечных сил достаточно развить сечение верхнего пояса. При больших пролетах балок и для кранов Q 50 т и больше устраивают специальные тормозные конструкции - тормозные балки или фермы. Фермы экономичнее по расходу стали, но сложнее в изготовлении и монтаже, поэтому обычно применяются тормозные балки со стенкой из рифленого листа толщиной 6-8 мм. Для крайних рядов поясами тормозной балки являются верхний пояс подкрановой балки и окаймляющий швеллер или пояс вспомогательной фермы. При пролете балок 12 м наружный пояс крепится к стойке фахверка.
Листы тормозных балок приваривают к поясам сплошным швом с подваркой с нижней стороны. Для обеспечения местной устойчивости и предотвращения случайных погибов тормозные листы снизу укрепляют ребрами жесткости сечением не менее 65x6; шаг ребер 1,5-2 м.
10. Расчет металлических конструкций по допускаемым напряжениям.
Предельным называется состояние конструкции, при котором она перестает удовлетворять эксплуатационным требованиям.
В соответствии с характером требований, предъявляемых к конструкции, различают первое и второе предельное состояния. Существует множество причин приводящих конструкцию в предельное состояние. Поэтому в нормах проектирования они фигурируют как группы предельных состояний.
Первая группа включает в себя потери несущей способности и полную непригодность конструкции к эксплуатации вследствие потери устойчивости, разрушения металла, качественного изменения конфигурации, чрезмерного развития пластических деформаций.
Вторая группа предельных состояний характеризуется затруднением нормальной эксплуатации сооружений или снижением долговечности вследствие появления недопустимых перемещений (прогибов, осадок опор, углов поворота, колебаний, трещин и т.п.).
Расчетные формулы для подбора сечений
и проверки несущей способности конструкции
по первому предельному состоянию исходят
из основного неравенства
,
где N – предельное
наибольшее усилие в конструкции,
вызываемое внешними воздействиями; S
– предельная несущая способность
конструкции, зависящая от прочности
материала, размеров поперечного сечения
и условий работы конструкции.
В
течение всего срока эксплуатации
конструкции внешние воздействия могут
меняться. Наибольшие их величины
встречаются достаточно редко, поэтому
наибольшие нагрузки предусмотрены
нормативными документами. В соответствии
с этим в нормах проектирования различают
расчетные величины воздействия
и нормативные
,
которые связаны между собой коэффициентом
надежности по нагрузке
,
т.е.
.
Нормативные нагрузки определяются по СНиП 2.01.07-85 “Нагрузки и воздействия”.
Для определения расчетной нагрузки
задаются обеспеченностью
,
т.е. допускается всего 0,1% случаев
превышения этой нагрузки за весь период
эксплуатации сооружения. Задавая
достаточно высокую обеспеченность
расчетной нагрузки, определяют ее
значение, а следовательно, коэффициент
надежности по нагрузке
.
Обычно на конструкции действует одновременно несколько видов нагрузок. Поэтому и суммарное воздействие всех расчетных нагрузок должно иметь статистическую изменчивость. Чем больше одновременно действующих нагрузок учитывается в расчете, тем меньше вероятность превышения их максимального суммарного воздействия.
В методике предельных состояний это
учитывается коэффициентом сочетаний
,
на который следует умножать каждую из
суммируемых нагрузок. Согласно СНиП
2.01.07-85 значения коэффициентов сочетаний
колеблются от 1 до 0,6 и менее для
особых случаев.
Для таких сооружений как атомные
электростанции, телевизионные башни,
крытые спортивные и другие сооружения,
имеющие особо важное значение (класс
1) вводится коэффициент надежности по
ответственности
,
который задается в пределах 0,95 до 1,2 для
сооружений первого класса, для второго
класса 0,95, для прочих 0,8 - 0,95.
Тогда левую часть неравенства (2.1) можно записать
АRn
c
/
m
= S
где
- число влияния, т.е. усилие в конструктивном
элементе от единичной внешней нагрузки;
- число нагрузок, учитываемых одновременно
в работе конструкции.
Правая часть неравенства (2.1) выражает предельную несущую способность конструкции, зависящую от сопротивляемости материалов внешним воздействиям (нагрузкам).