Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Версия 3!!!.docx
Скачиваний:
22
Добавлен:
23.09.2019
Размер:
500.6 Кб
Скачать
  1. Эффект Керра. Вращение плоскости поляризации.

Эффект Керра— явление изменения значения показателя преломления оптического материала пропорционально второй степени напряженности приложенного электрического поля. В сильных полях наблюдаются небольшие отклонения от закона Керра.

Эффект Керра был открыт в 1875 году шотландским физиком Джоном Керром (англ.).

Качественное описание

Под воздействием внешнего постоянного или переменного электрического поля в среде может наблюдаться двойное лучепреломление, вследствие изменения поляризации вещества. Пусть коэффициент преломления для обыкновенного луча равен no, а для необыкновенного — ne. Разложим разность коэффициентов преломления none, как функцию внешнего поля E, по степеням E. Если до наложения поля среда была неполяризованной и изотропной, то none должно быть чётной функцией E (при изменении направления поля эффект не должен менять знак). Значит, в разложении по степеням E должны присутствовать члены лишь чётных порядков, начиная с E2. В слабых полях членами высших порядков можно пренебречь, в результате чего

Закон Керра

neno = Bλ0E2,

где λ0 — длина волны света в вакууме; B — постоянная Керра, зависящая от природы вещества, длины волны λ0 и температуры. Для большинства веществ B > 0, что означает их подобие оптически положительным одноосным кристаллам.

Вращение плоскости поляризации света - поворот плоскости поляризации линейно поляризованного света при его прохождении через вещество. Вращение плоскости поляризации наблюдается в средах, обладающих двойным круговым лучепреломлением, т. е. различными показателями преломления для право- и левополяризованных по кругу лучей. Линейно поляризованный пучок света можно представить как результат сложения двух лучей, распространяющихся в одном направлении и поляризованных по кругу с противоположными направлениями вращения. Если такие два луча распространяются в теле с различными скоростями, то это приводит к повороту плоскости поляризации суммарного луча. Вращение плоскости поляризации может быть обусловлено либо особенностями внутренней структуры вещества, либо внешним магнитным полем. Вращение плоскости поляризации наблюдается, как правило, в оптически изотропных телах (кубические кристаллы, жидкости, растворы и газы).

  1. Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.

Явление взаимного наложения когерентных волн, в результате чего происходит устойчивое пространственное ослабление или усиление интенсивности света в зависимости от фазовых соотношений между этими волнами, называется интерференцией. Интерфере́нция све́та — явление взаимного усиления или ослабления света до полной темноты (гашения) при наложении двух его волн, которые имеют одинаковые частоты колебаний. Интерференция возникает, когда два когерентных источника света, т. е. испускающие полностью однородные лучи света с постоянной разностью фаз, расположены очень близко друг от друга. Такими источниками света являются, например, два зеркальных изображения одного источника света.

Интерферировать могут только когерентные волны. Когерентными называют такие волны, которые имеют одинаковые частоты (длины волн) и постоянную разность фаз. Естественные источники света излучают некогерентные волны. Для образования когерентных волн различными методами разделяют волны, идущие от одного точечного источника.

Разность фаз световых волн, распространяющихся в среде, обычно выражают через оптическую разность хода в точке наблюдения. Оптическая разность хода - это разность оптических длин путей двух волн.

- оптическая длина пути,

- оптическая разность хода.

Оптическая разность хода отличается от обычной разности хода тем, что она учитывает показатель преломления среды. Связано это тем, что при переходе из одной среды в другую меняется длина волны.

Разность фаз колебаний Dф = ф1 – ф2 связана с оптической разностью хода соотношением:

где лямда – длина волны света в вакууме. В интерференционной картине свет будет максимально усиливаться и ослабляться по интенсивности в тех местах, где оптическая разность налагающихся волн равна соответственно четному и нечетному числу длин полуволн:

где k = 0, ±1, ±2, ... .