
- •Волновая природа света. Уравнение электромагнитных волн. Скорость распространения электромагнитных волн. Длина волны, частота.
- •Свет и цвет. Видимый свет.
- •Законы геометрической оптики. Луч волны. Принцип Ферма.
- •Полное внутреннее отражение света, применение этого явления.
- •Линзы. Тонкая линза. Формула тонкой линзы. Построение изображений в тонких линзах.
- •Критерий применимости геометрической оптики. Аберрации оптических приборов.
- •Основные фотометрические величины – световой поток, освещенность, сила света. Единицы измерения.
- •Волновой цуг. Длина когерентности, время когерентности. Естественный свет и поляризованный свет. Степень поляризации света.
- •Поляроиды и их применение. Закон Малюса.
- •Явление двойного лучепреломления.
- •Эффект Керра. Вращение плоскости поляризации.
- •Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.
- •Интерференционный опыт Юнга. Ширина интерференционной полосы.
- •Интерференция в тонких пленках. Полосы равного наклона. Условия максимумов интерференции. Просветление оптики.
- •Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Применение интерференции света.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейность распространения света.
- •Дифракция Френеля на круглом отверстии, на сплошном диске. Пятно Пуассена. Радиус зоны Френеля.
- •Дифракция Фраунгофера на одной щели, на двух щелях. Ширина дифракционного максимума.
- •Дифракционная решетка. Условия дифракционных максимумов и минимумов.
- •Разрешающая способность дифракционной решетки. Критерий Рэлея.
- •Дифракция рентгеновских лучей. Рентгеноструктурный анализ. Формула Вульфа-Брэггов.
- •Взаимодействие света с веществом. Дисперсия, нормальная и анормальная. Закон Бугера.
- •Классическое объяснение явления дисперсии света.
- •Эффект Доплера для электромагнитных волн.
- •Эффект Черенкова, качественное объяснение.
- •Тепловое равновесное излучение. Излучательная и поглощательная способность. Функция Кирхгофа. Законы излучения абсолютно черного тела.
- •Закон Стефана — Больцмана
- •Закон Рэлея–Джонса. Ультрафиолетовая катастрофа. Гипотеза Планка.
- •Фотоэффект, уравнения Эйнштейна. Красная граница фотоэффекта.
- •Эффект Комптона, его объяснение из законов сохранения энергии и импульса. Энергия фотона и импульс фотона.
- •Волна вероятности. Опыт Джермера и Дэвиссона. Волна де Бройля. Корпускулярно-волновой дуализм.
- •Волновая функция. Уравнение Шредингера. Стационарное уравнение Шредингера.
- •Сотношение неопределенностей Гейзенберга.
- •Спектр излучения атома водорода. Формула Бальмера.
- •Планетарная модель атома, ее недостатки. Постулаты Бора. Вывод радиуса n-ой боровской электронной орбиты и полной энергии на n-ой орбите.
- •Движение свободной частицы. Собственные значения, собственные функции, удовлетворяющие уравнению Шредингера.
- •Туннельный эффект, его применения.
- •Электрон в атоме. Квантовые числа. Принцип запрета Паули.
- •Излучение и поглощение света. Спонтанные переходы, резонансное поглощение, вынужденное излучение. Закон Бугера – Ламберта – Фабриканта.
- •Инверсная населенность. Отрицательное поглощение света. Лазеры и мазеры.
- •Устройство лазера. Рубиновый лазер, гелий–неонный лазер. Свойства лазерного излучения.
- •Голография. Способ записи голограммы.
- •Волоконно–оптическая связь: устройство и преимущества.
- •Принцип инвариантности. Законы сохранения
- •Строение атомного ядра. Массовое и зарядовое число. Изотопы и изобары. Модели ядра.
- •Энергия связи ядра. Дефект массы ядра.
- •Радиоактивность. Законы радиоактивного распада. Период полураспада.
- •Опыты Резерфорда. Сечение рассеяния альфа-частицы на ядре.
- •1. Планетарная модель атома, предложенная Резерфордом.
- •2. Дифференциальное сечение рассеяния. Формула Резерфорда.
- •Нейтрон, открытие нейтрона. Сечение взаимодействия нейтрона с ядром.
- •Ядерные реакции. Искусственная радиоактивность.
- •Деление ядер. Альфа-распад. Альфа-активность.
- •Бета-распад. Бета-активность.
- •Термоядерные реакции. Термоядерный синтез.
- •Взаимодействие фотонного излучения с веществом.
- •Тормозное излучение. Коротковолновая граница сплошного рентгеновского излучения. Рентгеновская трубка.
- •Опыты Франка Герца
- •Энергия и импульс светового кванта.
- •Момент импульса частицы. Орбитальное квантовое число. Магнитное квантовое число.
- •Спин электрона. Принцип Паули. Правило отбора при излучении и поглощении света атомом.
- •Постулаты Эйнштейна. Замедление времени. Преобразования Лоренца.
- •Преобразования Лоренца
- •Энергия и импульс в релятивистском случае. Связь массы и энергии. Инвариант в релятивистском случае.
Линзы. Тонкая линза. Формула тонкой линзы. Построение изображений в тонких линзах.
Линзы представляют собой прозрачные тела, ограниченные двумя поверхностями (одна из них обычно сферическая, иногда цилиндрическая, а вторая – сферическая или плоская), преломляющими световые лучи, способные формировать оптические изображения предметов. Материалом для линз служат стекло, кварц, кристаллы, пластмассы и т.п. По внешней форме линзы делятся на: 1-двояковыпуклые,2-плосковыпуклые,3-двояковогнутые,4-плосковогнутые,5-выпукло-вогнутые,6-вогнуто-выпуклые. По оптическим свойствам линзы делятся на собирающие и рассеивающие.
Линза называется тонкой, если ее толщина (расстояние между ограничивающими поверхностями) значительно меньше по сравнению с радиусами поверхностей, ограничивающих линзу. (N-1)(1/R1 +1/R2)=1/a+1/b – формула тонкой линзы. Формула тонкой линзы
Расстояния от точки предмета до центра линзы и от точки изображения до центра линзы называются сопряжёнными фокусными расстояниями.
Эти величины находятся в зависимости между собой и определяются формулой, называемой формулой тонкой линзы (открытой Исааком Барроу):
где
—
расстояние от линзы до предмета;
—
расстояние от линзы до изображения;
—
главное фокусное расстояние линзы. В
случае толстой линзы формула остаётся
без изменения с той лишь разницей, что
расстояния отсчитываются не от центра
линзы, а от главных
плоскостей.
Для нахождения той или иной неизвестной величины при двух известных пользуются следующими уравнениями:
Если предмет находится на бесконечно далёком от линзы расстоянии, то его изображение получается в заднем фокусе линзы F’ действительным, перевёрнутым и уменьшенным до подобия точки.
Если предмет приближён к линзе и находится на расстоянии, превышающем двойное фокусное расстояние линзы, то изображение его будет действительным, перевёрнутым и уменьшенным и расположится за главным фокусом на отрезке между ним и двойным фокусным расстоянием.
Если предмет помещён на двойном фокусном расстоянии от линзы, то полученное изображение находится по другую сторону линзы на двойном фокусном расстоянии от неё. Изображение получается действительным, перевёрнутым и равным по величине предмету.
Если предмет помещён между передним фокусом и двойным фокусным расстоянием, то изображение будет получено за двойным фокусным расстоянием и будет действительным, перевёрнутым и увеличенным.
Если предмет находится
в плоскости переднего главного фокуса
линзы, то лучи, пройдя через линзу, пойдут
параллельно, и изображение может
получиться лишь в бесконечности.
Критерий применимости геометрической оптики. Аберрации оптических приборов.
Критерий
применимости
геометрической оптики
- это
.
Это соотношение можно рассматривать как критерий наблюдения дифракции. Если число зон Френеля, укладывающихся на препятствии, становится очень большим, дифракционные явления практически незаметны:
|
Это сильное неравенство определяет границу применимости геометрической оптики. Узкий пучок света, который в геометрической оптике называется лучом, может быть сформирован только при выполнении этого условия. Таким образом, геометрическая оптика является предельным случаем волновой оптики.
Аберрация оптических систем - искажение изображения, вызываемое несовершенством реальных оптических систем.
Аберрации оптических систем.
Сферическая аберрация.
Хроматическая аберрация.
Аберрация света в астрономии.
Аберрации электронных линз.
Аберрации оптических систем — ошибки, или погрешности изображения в оптической системе, вызываемые отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрации характеризуют различного вида нарушения гомоцентричности в структуре пучков лучей, выходящих из оптической системы.
Сфери́ческая аберра́ция — нарушение гомоцентричности пучков лучей, прошедших через оптическую систему без нарушения симметрии строения этих пучков (в отличие от комы и астигматизма).
Хромати́ческие аберра́ции заключаются в паразитной дисперсии света, проходящего через оптическую систему (фотографический объектив,бинокль, микроскоп, телескоп и т.д.). При этом белый свет разлагается на составляющие его цветные лучи, в результате чего изображения предмета в разных цветах не совпадают в пространстве изображений.
Аберра́ция све́та в астрономии — кажущееся смещение небесного объекта вследствие конечной скорости распространения света в сочетании с движением наблюдаемого объекта и наблюдателя. Действие аберрации приводит к тому, что видимое направление на объект не совпадает с геометрическим направлением на него в тот же момент времени.