
- •Волновая природа света. Уравнение электромагнитных волн. Скорость распространения электромагнитных волн. Длина волны, частота.
- •Свет и цвет. Видимый свет.
- •Законы геометрической оптики. Луч волны. Принцип Ферма.
- •Полное внутреннее отражение света, применение этого явления.
- •Линзы. Тонкая линза. Формула тонкой линзы. Построение изображений в тонких линзах.
- •Критерий применимости геометрической оптики. Аберрации оптических приборов.
- •Основные фотометрические величины – световой поток, освещенность, сила света. Единицы измерения.
- •Волновой цуг. Длина когерентности, время когерентности. Естественный свет и поляризованный свет. Степень поляризации света.
- •Поляроиды и их применение. Закон Малюса.
- •Явление двойного лучепреломления.
- •Эффект Керра. Вращение плоскости поляризации.
- •Явление интерференции света. Оптическая разность хода и разность фаз. Условия усиления и ослабления интенсивности света.
- •Интерференционный опыт Юнга. Ширина интерференционной полосы.
- •Интерференция в тонких пленках. Полосы равного наклона. Условия максимумов интерференции. Просветление оптики.
- •Интерференция в тонких пленках. Полосы равной толщины. Кольца Ньютона. Применение интерференции света.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля. Прямолинейность распространения света.
- •Дифракция Френеля на круглом отверстии, на сплошном диске. Пятно Пуассена. Радиус зоны Френеля.
- •Дифракция Фраунгофера на одной щели, на двух щелях. Ширина дифракционного максимума.
- •Дифракционная решетка. Условия дифракционных максимумов и минимумов.
- •Разрешающая способность дифракционной решетки. Критерий Рэлея.
- •Дифракция рентгеновских лучей. Рентгеноструктурный анализ. Формула Вульфа-Брэггов.
- •Взаимодействие света с веществом. Дисперсия, нормальная и анормальная. Закон Бугера.
- •Классическое объяснение явления дисперсии света.
- •Эффект Доплера для электромагнитных волн.
- •Эффект Черенкова, качественное объяснение.
- •Тепловое равновесное излучение. Излучательная и поглощательная способность. Функция Кирхгофа. Законы излучения абсолютно черного тела.
- •Закон Стефана — Больцмана
- •Закон Рэлея–Джонса. Ультрафиолетовая катастрофа. Гипотеза Планка.
- •Фотоэффект, уравнения Эйнштейна. Красная граница фотоэффекта.
- •Эффект Комптона, его объяснение из законов сохранения энергии и импульса. Энергия фотона и импульс фотона.
- •Волна вероятности. Опыт Джермера и Дэвиссона. Волна де Бройля. Корпускулярно-волновой дуализм.
- •Волновая функция. Уравнение Шредингера. Стационарное уравнение Шредингера.
- •Сотношение неопределенностей Гейзенберга.
- •Спектр излучения атома водорода. Формула Бальмера.
- •Планетарная модель атома, ее недостатки. Постулаты Бора. Вывод радиуса n-ой боровской электронной орбиты и полной энергии на n-ой орбите.
- •Движение свободной частицы. Собственные значения, собственные функции, удовлетворяющие уравнению Шредингера.
- •Туннельный эффект, его применения.
- •Электрон в атоме. Квантовые числа. Принцип запрета Паули.
- •Излучение и поглощение света. Спонтанные переходы, резонансное поглощение, вынужденное излучение. Закон Бугера – Ламберта – Фабриканта.
- •Инверсная населенность. Отрицательное поглощение света. Лазеры и мазеры.
- •Устройство лазера. Рубиновый лазер, гелий–неонный лазер. Свойства лазерного излучения.
- •Голография. Способ записи голограммы.
- •Волоконно–оптическая связь: устройство и преимущества.
- •Принцип инвариантности. Законы сохранения
- •Строение атомного ядра. Массовое и зарядовое число. Изотопы и изобары. Модели ядра.
- •Энергия связи ядра. Дефект массы ядра.
- •Радиоактивность. Законы радиоактивного распада. Период полураспада.
- •Опыты Резерфорда. Сечение рассеяния альфа-частицы на ядре.
- •1. Планетарная модель атома, предложенная Резерфордом.
- •2. Дифференциальное сечение рассеяния. Формула Резерфорда.
- •Нейтрон, открытие нейтрона. Сечение взаимодействия нейтрона с ядром.
- •Ядерные реакции. Искусственная радиоактивность.
- •Деление ядер. Альфа-распад. Альфа-активность.
- •Бета-распад. Бета-активность.
- •Термоядерные реакции. Термоядерный синтез.
- •Взаимодействие фотонного излучения с веществом.
- •Тормозное излучение. Коротковолновая граница сплошного рентгеновского излучения. Рентгеновская трубка.
- •Опыты Франка Герца
- •Энергия и импульс светового кванта.
- •Момент импульса частицы. Орбитальное квантовое число. Магнитное квантовое число.
- •Спин электрона. Принцип Паули. Правило отбора при излучении и поглощении света атомом.
- •Постулаты Эйнштейна. Замедление времени. Преобразования Лоренца.
- •Преобразования Лоренца
- •Энергия и импульс в релятивистском случае. Связь массы и энергии. Инвариант в релятивистском случае.
Тормозное излучение. Коротковолновая граница сплошного рентгеновского излучения. Рентгеновская трубка.
Тормозное излучение — электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».
Рентгеновская трубка - электровакуумный прибор, служащий источником рентгеновского излучения
Коротковолновая граница сплошного рентгеновского излучения определяется формулой из которой следует:
где
напряжение на трубке измеряется в
киловольтах.
Коротковолновая граница определяется только напряжением на трубке.
Опыты Франка Герца
При увеличении ускоряющего потенциала вплоть до 4,86 В анодный ток возрастает монотонно, его значение проходит через максимум (4,86 В), затем резко уменьшается и возрастает вновь. Дальнейшие максимумы наблюдаются при 24,86 и 34,86 В.
Опыты Франка и Герца показали, что электроны при столкновении с атомами ртути передают атомам только определенные порции энергии, причем 4,86 эВ — наименьшая возможная порция энергии (наименьший квант энергии), которая может быть поглощена атомом ртути в основном энергетическом состоянии. Следовательно, идея Бора о существовании в атомах стационарных состояний блестяще выдержала экспериментальную проверку.
Атомы ртути, получившие при соударении с электронами энергию E, переходят в возбужденное состояние и должны возвратиться в основное, излучая при этом, согласно второму постулату Бора, световой квант с частотой = E/h. По известному значению E = 4,86 эВ можно вычислить длину волны излучения: = hc/E 255 нм. Таким образом, если теория верна, то атомы ртути, бомбардируемые электронами с энергией 4,86 эВ, должны являться источником ультрафиолетового излучения с 255 нм. Опыт действительно обнаруживает одну ультрафиолетовую линию с 254 нм. Таким образом, опыты Франка и Герца экспериментально подтвердили не только первый, но и второй постулат Бора.
Первый
постулат Бора (постулат стационарных
состояний): в атоме существуют
стационарные (не изменяющиеся со
временем) состояния, в которых он не
излучает энергии.
где те — масса электрона, v — его скорость по n-й орбите радиуса rn, ћ = h/(2).
Второй
постулат Бора (правило частот): при
переходе электрона с одной стационарной
орбиты на другую излучается (поглощается)
один фотон с энергией равной разности
энергий соответствующих стационарных
состояний (Еn
и Em
— соответственно энергии стационарных
состояний атома до и после излучения
(поглощения)).
Третий постулат Величина светового кванта равна разности энергий этих стационарных состояний