
- •Электронная Оже - спектроскопия (эос).
- •1. Возможности, применение, особенности метода эос.
- •2. Физические основы методы эос. Механизм Оже-процесса.
- •3. Оэс. Глубина выхода Оже-электронов.
- •4. Вероятность Оже-эффекта. Вероятность выхода Оже-электронов из разных матриц.
- •5. От чего зависит интенсивность линий Оже - спектра.
- •8. Методика обработки и расшифровки Оже - спектров.
- •10. Количественный анализ с помощью метода эос.
- •11. Устройство оборудования для измерения методом эос.
- •13. Аппаратура для эос. Источники электронов (устройство принцип, работы и требования).
- •14.Аппаратура для эос. Энергоанализатор электронов типа цилиндрическое зеркало ацз.
- •15. Область применения и ограничения метода эос.
- •Рентгеновская фотоэлектронная спектроскопия (рфс).
- •Количественный анализ
- •3. Рфс спектры, их получение. Структура пиков. Валентные уровни.
- •4. Рфс Вычисление энергии связи на основе данных, полученных методом рфс. Уравнение фотоэффекта и учет работы выхода энергоанализатора. Точность определения энергии связи методом рфс.
- •5. Аппаратура для рфс. Вакуумная система и требования высокого вакуума для измерения методом рфс.
- •6. Источники рентгеновского излучения. Способы монохроматизации рентгеновского излучения.
- •7. Аппаратура для рфс. Полусферический анализатор электронов (пса). (Устройство, принцип работы и энергетическое разрешение.)
- •8. Рфс.Энергетическое разрешение(разрешающая способность) в методе рфс.
- •9. Количественный анализ с помощью метода рфс.
- •10. Химический анализ методом рфс. Химический сдвиг.
- •11.Определение состава по глубине образца методом рфс. Определение толщины тонких пленок. Определение состава по глубине образца
- •12. Область применения и ограничения метода рфс.
- •Вторичная ионная масс-спектрометрия (вимс).
- •2. Вимс Взаимодействие первичных ионов с твёрдым телом. Механизм образования вторичных ионов. Коеффициент вторичной ионной эмиссии.
- •3. Основные параметры, влияющие на выход вторичных ионов. Процесс распыления ионов в методе вимс.
- •4. Аппаратура для вимс. Вакуумная система и требования высокого вакуума для измерения методом вимс.
- •5. Аппаратура для вимс. Источник первичных ионов (жидкие металлы, газы).
- •6.Аппаратура для вимс. Масс-анализатор вторичных ионов (квадрупольный, магнитный, времяпролетный)
- •7. Методика получения масс-спектра в методе вимс. Структура масс-спектра. Явление интерференции масс.
- •8. Вимс. Глубинный профиль распределения в методе вимс. Методика получения глубинного профиля. Выбор параметров получения глубинного профиля (область анализа, скорость травления).
- •9. Влияние параметров исследования для получения глубинного профиля для метода вимс (форма, энергия, угол падения и плотность первичного пучка, свойства матрицы).
- •10. Профилометрия. Структура кратера распыления. Влияние параметров исследования метода вимс на структуру кратера распыления.
- •11. Глубинный профиль распределения в методе вимс. Получение концентрационных профилей распределения.
- •12. Количественная обработка данных методом вимс. Приготовление Эталонов для количественного анализа.
- •13. Область применения и ограничения метода вимс.
- •14. Сравнение метода вимс динамического и времяпролетного.
- •1.Возможности, применение, особенности методов сзм
- •2. Физические основы метода сканирующей туннельной микроскопии (стм). Туннельный эффект.
- •3.Физические основы метода атомно-силовой микроскопии (асм)
- •4. Аппаратура для стм. Требования и устройство сканирующего элемента для метода стм.
- •6. Конструкция установок сзм (основные положения).
- •7. Возможности метода стм (рельеф поверхности, локальная работа выхода электронов).
- •8. Возможности метода асм(рельеф поверхности, атомное разрешение).
- •9. Область применения и ограничения методов сзм.
6. Конструкция установок сзм (основные положения).
Схема установки
|
Рисунок: Схема установки. 1 - микроскоп, 2 - блок ЦАП и АЦП, 3 - блок управления шаговым двигателем, 4 - плата DSP, 5 - компьютеры (слева - сервер, справа - удаленный пользователь). |
Установка сканирующего зондового микроскопа состоит из нескольких функциональных блоков, изображенных на рис. 1.1. Это, во первых, сам микроскоп с пьезоманипулятором для управления зондом, преобразователем туннельного тока в напряжение и шаговым двигателем для подвода образца; блок аналого-цифровых и цифро-аналоговых преобразователей и высоковольтных усилителей; блок управления шаговым двигателем; плата с сигнальным процессором, рассчитывающим сигнал обратной связи; компьютер, собирающий информацию и обеспечивающий интерфейс с пользователем. Конструктивно блок ЦАПов и АЦП установлен в одном корпусе с блоком управления шаговым двигателем. Плата с сигнальным процессором (DSP - Digital Signal Processor) ADSP 2171 фирмы Analog Devices установлена в ISA слот
Принцип работы основывается на эффекте туннелирования. Если два проводящих электрода, один из которых плоскость, а другой –острие, разделить воздушным промежутком в несколько единиц или десятков ангстрем и создать между ними разность потенциалов, то через эту систему пойдет туннельный ток.
7. Возможности метода стм (рельеф поверхности, локальная работа выхода электронов).
Причина в уникальных свойствах, присущих этому методу: разрешающая способность до десятых долей ангстрема, не достижимая никакими другими способами, неразрушающий характер анализа, возможность работать как в вакуум, так и в различных средах, получение квазитрехмерного изображения рельефа. СТМ позволяет исследовать локальную работу выхода, идентифицировать атомные элементы на поверхности, их химические связи, получать картину распределения плотности электронных состояний не только с высоким пространственным разрешением, но и по энергиям, выделяя спектр свободных и заполненных состояний.
Области применения СТМ в настоящее время следующие:
-физика и химия поверхности на атомном уровне; здесь достигнуты впечатляющие результаты, например, прямое наблюдение реконструкции поверхности кремния;
-«нанометрия» - исследование с нанометровым разрешением шероховатости поверхности, процессов зародышеобразования при росте пленок, химического и ионного травления, осаждения ;
-«нанотехнология» - исследование и изготовление приборных структур в микроэлектронике;
-Исследование макромолекул, вирусов и иных биологических структур.
8. Возможности метода асм(рельеф поверхности, атомное разрешение).
Принцип действия атомного силового микроскопа (АСМ) основан на использовании сил атомных связей, действующих между атомами вещества. На малых расстояниях между двумя атомами (около одного ангстрема, 1 Ǻ = 10–8 см) действуют силы отталкивания, а на больших – силы притяжения. Совершенно аналогичные силы действуют и между любыми сближающимися телами. В сканирующем атомном силовом микроскопе такими телами служат исследуемая поверхность и скользящее над нею острие. Обычно в приборе используется алмазная игла, которая плавно скользит над поверхностью образца (как говорят, сканирует эту поверхность). При изменении силы F, действующей между поверхностью и острием, пружинка П, на которой оно закреплено, отклоняется, и такое отклонение регистрируется датчиком D. В качестве датчика в АСМ могут использоваться любые особо точные и чувствительные – прецизионные – измерители перемещений, например оптические, емкостные или туннельные датчики. На рисунке показан именно последний тип датчика, – фактически это такая же игла, какая применяется в сканирующем туннельном микроскопе. Величина отклонения упругого элемента (пружинки) несет информацию о высоте рельефа – топографии поверхности и, кроме того, об особенностях межатомных взаимодействий. Можно сказать, что в атомном силовом микроскопе сканирование исследуемого образца происходит по «поверхности постоянной силы», тогда как в СТМ – по поверхности постоянного туннельного тока. Принципы же прецизионного управления, основанного на обратной связи и улавливающего самые ничтожные изменения рельефа поверхности, в СТМ и АСМ практически одинаковы.
Рис. 2. Схема сканирующего атомного силового микроскопа
На рисунке изображена схема атомного силового микроскопа. О – острие (игла), П – пружина, на которой оно закреплено; P, Px, Py, Pz – пьезоэлектрические преобразователи. При этом Px и Py служат для сканирования образца под иглой, а Pz управляет расстоянием от острия до поверхности, D – туннельный датчик, который регистрирует отклонения пружинки с острием.
Атомный силовой микроскоп может использоваться для определения микрорельефа поверхности любых веществ, как проводящих, так и непроводящих, с его помощью можно наблюдать всевозможные несовершенства структуры, локализованные на изучаемых поверхностях, например, дислокации или заряженные дефекты, а также всяческие примеси. Кроме того, АСМ позволяет выявить границы различных блоков в кристалле, в частности доменов В последнее время с помощью атомного силового микроскопа физики стали интенсивно изучать биологические объекты, например молекулы ДНК и другие макромолекулы, главным образом для целей нарождающегося и, судя по всему, чрезвычайно перспективного направления – биомолекулярной технологии. Интересно, что АСМ позволяет решать не только прикладные задачи, но и глобальные проблемы фундаментальной физики. В частности, определив с его помощью поведение межатомных сил и константы взаимодействий между атомами поверхности и острия, можно сделать довольно точные заключения о существовании или отсутствии новых фундаментальных взаимодействий и даже о структуре физического вакуума.
Манипулятор АСМ и СТМ позволяет при габаритах в несколько сантиметров передвигать иглу с разрешением лучше 0,1 Ǻ. Если бы промышленный робот обладал подобной точностью перемещений при габаритах около метра, то иголкой, зажатой в манипуляторах, он мог бы нарисовать окружность диаметром в несколько нанометров.
Коэффициент температурного расширения большинства материалов около 10−6. При размерах манипулятора в несколько сантиметров изменение температуры на 0,01° приводит к перемещению иглы вследствие теплового дрейфа на 1 Ǻ.