
- •Траектория, скорость и ускорение точки при векторном способе задания движения.
- •Траектория, скорость и ускорение точки при задании движения в декартовой системе координат.
- •Скорость и ускорение точки при естественном способе задания движения.
- •Траектория, скорость и ускорение точки при задании движения на плоскости в полярных координатах.
- •Понятие о криволинейных координатах. Координатные линии и координатные оси.
- •Определение скорости точки при задании в криволинейных координатах . Пример.
- •Поступательное движение твердого тела. Траектории, скорости и ускорения точек тела.
- •Вращение твердого тела вокруг неподвижной оси. Скорости и ускорения точек тела (векторные и скалярные выражения).
- •Определение скоростей точек плоской фигуры с помощью мцс.
- •Соотношение между ускорениями двух точек плоской фигуры при плоском движении.
- •Способы определения углового ускорения при плоском движении.
- •Мгновенный центр ускорений. Способы нахождения.
- •Определение ускорений точек плоской фигуры с помощью мцу.
- •Вращение твердого тела вокруг неподвижной точки. Углы Эйлера.
- •Скорости и ускорения точек тела при его вращении вокруг неподвижной точки.
- •Скорости и ускорения течек твердого тела при его свободном движении.
- •Сложное движение точки. Основные понятия.
- •Полная и локальная производные вектора. Формула Бура.
- •Скорости и ускорения точки при сложном движении.
- •Ускорение Кориолиса. Правило Жуковского.
- •Сложение вращений твердого тела вокруг пересекающихся осей.
- •Сложение вращений твердого тела вокруг параллельных осей.
- •Пара вращений.
- •Аксиомы статики.
- •Основные виды связей и их реакции.
- •Система сходящихся сил. Условия равновесия.
- •Алгебраический и векторный моменты силы относительно точки.
- •Момент силы относительно оси.
- •Связь векторного момента силы относительно точки с моментом силы относительно
- •Аналитические выражения для моментов силы относительно осей координат.
- •Пара сил. Теорема о сумме моментов сил, составляющих пару, относительно
- •Векторный и алгебраический моменты пары сил.
- •Эквивалентность пар. Сложение пар. Условия равновесия пар сил.
- •Лемма о параллельном переносе силы.
- •Теорема о приведении произвольной системы сил к силе и паре сил – основная
- •Главный вектор и главный момент системы сил.
- •Условия равновесия произвольной системы сил. Частные случаи.
- •Трение качения. Коэффициент трения качения.
- •Центр системы параллельных сил. Формула для радиус-вектора и координат центра системы параллельных сил.
- •Центр тяжести тела. Методы нахождения центра тяжести.
- •1) Метод симметрии.
- •2) Метод разбиения.
- •3) Метод интегрирования.
Пара вращений.
При противоположных направлениях векторов омега переносное и омега радиальное и равенство их модулей, если условие выполняется на отрезке времени t2-t1, абсолютное движение будет поступательным. Такой случай сложения вращательных движений называется парой вращений.
Аксиомы статики.
1) Если на свободное твердое тело действует две силы, то тело может находиться в равновесии только тогда, когда эти силы равны по модулю, действуют по одной прямой в противоположные стороные.
2) Действие данной системы сил на абсолютно твердое тело не изменяется, если к ней добавить или от нее отнять уравновешенную систему сил.
Следствие. Не изменяя действия силы на абсолютно твердое тело, силу можно переносить по линии ее действия в любую точку тела.
3) При всяком действии одного материального тела на другое со стороны другого тела имеется противодействие, такое же по величине, но противоположное по направлению.
Следствие. Сумма всех внутренних сил всегда равна нулю.
4) Две силы, приложенные к твердому телу в одной точке, имеют равнодействующую, приложенную в той же точке и изображаемую диагональю параллелограмма, построенного на этих силах как на сторонах.
5) Механическое состояние системы не изменится, если освободить ее от связей, приложив к точкам системы силы, равные реакциям связей.
Материальные тела, ограничивающие перемещение данного тела в пространстве, называют связями.
Сила, с которой связь действует на тело, препятствуя его перемещениям, называется силой реакции связи, или просто реакцией связи.
Основные виды связей и их реакции.
Реакция связи направлена в сторону, противоположную той, куда связь не дает перемещаться телу. Поверхности связей полагаем идеально гладкими, т.е. такими, в которых не возникают силы трения. Подобные связи называют идеальными.
1) Гладкая поверхность (плоскость). Реакция R в случае гладкой поверхности направлена по общей нормали к поверхностям связи и тела в точке их контакта и приложена к телу.
2) Нить. Этим термином обозначают цепи, тросы, канаты, которые могут воспринимать только силы растяжения. Нить считается гибкой и нерастяжимой. Реакция нити на тело направлена по касательной к нити в точке ее закрепления.
3) Цилиндрический шарнир (подшипник). Цилиндрический шарнир представляет собой цилиндрическую втулку, в которой находится ось вращения. Он не воспринимает осевой силы, его реакция находится в плоскости Axy, перпендикулярной оси шарнира. Реакция Ra может быть направлена по любому радиусу шарнира в плоскости Axy.
4) Сферический шарнир. Он позволяет телу поворачиваться, но не разрешает линейные перемещения. Реакция сферического шарнира R приложена к его центру и может быть направлена по любому радиусу шарнира.
5) Подпятник. Он отличается от цилиндрического шарнира тем, что кроме радиальных сил может воспринимать и осевую силу. Реакция подпятника, как и реакция сферического шарнира, может иметь любое направление.
6) Невесомый стержень с шарнирами на концах. Реакция прямолинейного невесомого стержня с шарнирами на концах направлена вдоль оси стержня. В отличае от нити такой стержень может передавать как силы растяжения, так и силы сжатия.