
- •1. Первообразная и неопределенный интеграл. Теорема об общем виде
- •2. Основные свойства неопределенных интегралов.
- •3. Метод интегрирования разложением и подстановкой. Теорема о замене
- •4. Метод интегрирования по частям. Теорема.
- •5. Интегрирование простейших дробей.
- •6. Интегрирование дробно-рациональных функций.
- •7. Интегрирование иррациональных выражений.
- •8. Интегрирование тригонометрических функций.
- •17.Несобственные интегралы с бесконечными пределами. Теорема о сходимости таких интегралов.
- •18. Несобственные интегралы от неограниченных функций.
- •19. Абсолютная сходимость несобственных интегралов.
- •20. Числовые ряды. Частичные суммы. Сходимость ряда. Теорема об общем члене сходящегося ряда.
- •21. Основные свойства рядов. Остаток ряда. Теорема об остатке ряда.
- •22. Положительные ряды. Признаки сходимости (теоремы сравнения)
- •23. Признак Даламбера.
- •24. Радикальный признак Коши.
- •25. Интегральный признак Коши-Маклорена.
- •26. Знакопеременные ряды. Понятие абсолютной сходимости. Теорема Коши об абсолютной сходимости.
- •27. Условная сходимость рядов. Теорема Лейбница.
- •28. Функциональные ряды. Область сходимости.
- •29. Степенные ряды. Теорема Абеля.
- •30. Ряды Тейлора. Критерий разложимости функции в ряд Тейлора.
- •35. Линейные уравнения первого порядка. Метод вариации произвольной постоянной (Лагранжа).
- •36. Уравнение Бернулли.
- •37. Задача Коши для уравнения первого порядка, разрешенного относительно производной.
- •38. Дифференциальные уравнения порядка выше первого. Два типа уравнений, метод решений которых понижение порядка.
- •39. Линейная зависимость функций. Определитель Вронского.
- •40. Однородные линейные дифференциальные уравнения с постоянными коэффициентами.
- •41. Неоднородные линейные дифференциальные уравнения с постоянными коэффициентами.
- •46. Частные производные высших порядков. Дифференцируемость функций нескольких переменных.
- •47. Дифференцирование сложных функций многих переменных.
- •48. Инвариантность формулы первого дифференциала.
- •49. Касательная плоскость и нормаль к поверхности.
- •50. Полные дифференциалы высших порядков.
- •51. Формула Тейлора для функции нескольких переменных.
- •52. Экстремум функции двух переменных. Необходимое условие экстремума. Достаточное условие экстремума.
52. Экстремум функции двух переменных. Необходимое условие экстремума. Достаточное условие экстремума.
Пусть
функция z
= f(x;
y)
определена в некоторой области D,
точка N(
D.
Точка (
называется
точкой максимума функции z
= f(x;
y),
если существует такая окрестность точки
(
,
что для каждой точки (x;
y),
отличной от м из этой окрестности
выполняется неравенство f(x;
y)<
f(
.
Необходимое
условие: Если в точке N(
дифференцируемая функция z
= f(x;
y)
имеет экстремум, то ее частные производные
в этой точке равны нулю.
Достаточное
условие: Пусть в стационарной точке (
и некоторой ее окрестности функция
f(x;y)
имеет непрерывные частные производные
до 2 порядка включительно. Вычислим в
точке (
значения A=
B=
Обозначим
=AC-B*2
Тогда:
1)Если
>0,
то функция f(x;
y)
в точке (
имеет экстремум. Максимум, если A<0,
минимум, если A>0
2) Если <0, то функция экстремума не имеет.