
- •1.1 Предмет, цели и задачи методики преподавания математики и ее связи с другими науками.
- •1.2.Математика как учебный предмет в школе.
- •1.3 Психолого-педагогические основы обучения математики.
- •1.4 Воспитание учащихся в процессе обучения математике. Развитие познавательного интереса школьников при обучении математике.
- •1.6. Проблема интеграции школьного курса математики и пути её решения.
- •1.7 Дидактические принципы обучения школьников математике.
- •1.8 Развивающее обучение. Принципы развивающего обучения.
- •1.9 Общие дидактические методы обучения школьников математике. Классификация методов обучения.
- •1.10.Методы научного познания в обучении математике
- •1.11 Определение понятий. Классификация понятий. Возможные ошибки в определении математических понятий школьниками и работа учителя по их предупреждению.
- •1.12 Определение понятий. Виды определений. Требования к определениям. Методика изучения математических понятий в школе.
- •1.13. Математическое понятие: термин, объем, содержание. Классификация понятий. Требования к классификации. Способы образования математических понятий.
- •1.15 Структура теорем. Виды теорем. Методика изучения теорем в школьном курсе математики.
- •1.16 Сущность понятия «доказательства». Методы доказательства теорем.
- •1.17 Общие методы решения математических задач. Классификация задач. Роль алгоритмов и эвристик в обучении решению задач. Организация обучения решению математических задач.
- •1.18 Задачи в школьном курсе математики и общая методика их решения. Роль и функции задач в математике. Основные этапы в решении задачи. Общие умения по решению задач.
- •1.19 Современные формы организации обучения математике. Урок как основная форма организации учебного процесса. Типы уроков. Основные требования к современному уроку.
- •1.21 Воспитание у учащихся потребности в доказательствах теорем. Методика обучения учащихся теоремам и их доказательствам. Подготовка учителя к доказательству теорем на уроке.
- •1.22 Дифференциация в обучении школьников математике в системе основного и дополнительного образования.
- •1.23 Развитие математических способностей и воспитание учащихся в процессе математического образования.
- •1.24 Анализ урока математики. Его роль в интенсификации учебного процесса.
- •9. Выводы и предложения.
- •1.25 История развития методики преподавания математики. Основные противоречия процесса обучения математике. Актуальные проблемы методики преподавания математики.
- •2.1 Методика изучения начал систематического школьного курса планиметрии.
- •2.2 Методика изучения подобных треугольников.
- •2.3 Методика изучения основных соотношений между элементами треугольника.
- •2.4 Методика изучения понятия равенства фигур. Доказательство первых теорем планиметрии. Признаки равенства треугольников.
- •2.5 Методика изучения четырехугольников и их свойства.
- •2.6 Методика изучения величин в школьном курсе планиметрии.
- •2.7 Обобщение понятия степени в школьном курсе математики.
- •2.8 Исторические и логические последовательности изучения числовых множеств. Общий принцип расширения числовых множеств. Общая схема изучения новых чисел.
- •2.9 Методика повторения и дальнейшего изучения натуральных чисел. Изучение обыкновенных и десятичных дробей.
- •2.10 Методика изучения тригонометрических функций в курсе планиметрии.
- •2.11 Методика изучения показательной и логарифмической функций в средней школе.
- •2.12 Методика введения и изучения рациональных чисел.
- •2.13 Методика введения и изучения иррациональных чисел.
- •2.16 Методика изучения тригонометрических уравнений и неравенств в средней школе.
- •2.17 Методика изучения показательных и логарифмических уравнений и неравенств в средней школе.
- •2.18 Методика изучения уравнений и их систем в средней школе. Равносильность уравнений. Алгебраические уравнения и их системы.
- •2.19 Методика изучения неравенств и их систем в средней школе. Метод интервалов при решении неравенств.
- •2.20 Методика изучения функций. Понятие функций. Возможная методическая схема изучения функций в базовой школе. Методика изучения алгебраических функций.
- •Методика изучения числовых последовательностей и прогрессий.
- •Методика введения и изучения понятия производной в средней школе.
- •Использование свойств тригонометрических функций в курсе математики в средней школы.
- •Методика обучения школьников решению текстовых задач арифметическим методом и методом составления уравнений и неравенств.
- •I. Арифметический метод.
- •II. Алгебраический метод.
- •Методические особенности изучения тригонометрических функций в средней школе. Построение графиков тригонометрических функций.
- •2.26 Использование понятия производной в курсе алгебры средней школы.
1.16 Сущность понятия «доказательства». Методы доказательства теорем.
Доказательство есть цепочка правильных умозаключений, идущих от исходных посылок, признанных истинными, к доказываемому утверждению. Основным инструментом доказательства теорем являются умозаключения. Умозаключение — рассуждение, в ходе которого из одного или нескольких суждений выводится новое суждение (называемое заключением или следствием), логически вытекающее из посылок.
Формой дедуктивных умозаключений, используемых при доказательстве теоремы, является силлогизм. В силлогизме содержится три понятия, а состоит он из двух посылок и вывода. Его структуру можно представить в таком виде:
Все М есть Р — большая посылка (БП);
К есть М — меньшая посылка (МП);
К есть Р — вывод (В).
Приведем пример силлогизма: «Все ромбы (М) есть параллелограммы (Р). Квадрат (К) есть ромб (М). Следовательно, квадрат (К) есть параллелограмм (Р)». Цепочка последовательно связанных силлогизмов, устанавливающая истинность теоремы, называется док-вом теоремы.
Проведение любого доказательства опирается на три блока знаний и умений: содержательный, структурный, логический. В содержательный блок входят элементы, связанные с ранее изученными математическими понятиями и фактами, кот использованы или в формулировке утверждения, или в кач-ве аргументов при проведении рассуждений. В структурный блок входят знания и умения, связанные со структурой утверждения и возможностями ее преобразования. В этот блок входят умения выделять условие и заключение теоремы, преобразовывать логическую форму теоремы с целью получения более простых под теорем и т. д. Логический блок содержит знания и умения, связанные с правилами логических рассуждений.
Различают частные и общие методы доказательства теорем.
К частным методам док-ва относят метод геометрических преобразований, перемещение плоскости, векторный, координатный, алгебраический методы и т. д.
Общими методами док-тва теорем в курсе математики средней школы являются:
синтетический(при синтетическом методе док-ва теоремы цепочка умозаключений строится так, что мысль движется от условия теоремы к ее заключению. К достоинствам синтетического метода следует отнести сжатость, краткость, исчерпывающую полноту. В методическом отношении синтетический метод имеет и свои недостатки: для учащихся остается неясным, как можно обнаружить такое док-во, почему в рассуждениях поступают так, а не иначе)
аналитический метод(цепочка силлогизмов строится так, что мысль движется
от заключения теоремы к ее условию)
док-во противоречием(от противного)
док-во методом перебора,
док-во методом исключения
,метод бесконечных исключений(Математическое утверждение доказывается для конечного числа случаев, и делается вывод о невыполнимости этого утверждения для остальных случаев, которых бесконечное число.)
метод полной индукции(перебираются все возможные случаи, к каждому из которых применяют либо синтетический метод, либо метод противоречия.)
метод мат. индукции,
метод конструирования.( путем геометрических построений, основанных на свойствах геометрических фигур, известных определениях и теоремах, строится объект, о котором идет речь в математическом утверждении. Этим методом в школьном курсе геометрии доказаны, например, теорема о существовании и единственности окружности, описанной около треугольника.