
- •1. Объемные расходомеры
- •1.1. Крыльчатые счетчики воды
- •1.2. Турбинные счетчики воды
- •2. Расходомеры переменного перепада давления
- •3. Конструктивные особенности сужающих устройств
- •3.1. Диафрагмы
- •3.2. Расходомерные сопла
- •3.3. Трубы Вентури
- •4. Расходомеры постоянного перепада давления
- •4.1. Теоретические основы измерения расхода при помощи ротаметров
- •4.2. Конструкции ротаметров
- •1. Дифференциальное уравнение установившегося плавно изменяющегося движения жидкости
- •2. Основные виды установившегося движения жидкости в призматическом открытом русле
- •3. Удельная энергия потока и удельная энергия сечения
- •4. Спокойные и бурные потоки. Критическая глубина
- •5. Критический уклон
- •1. Гидравлически наивыгоднейший профиль
- •2. Допускаемые скорости движения воды в каналах
- •3. Основные типы задач при расчете каналов
- •4. Основы гидравлического расчета каналов в безразмерных величинах
- •5. Характеристики живых сечений с различной формой взаимосвязи элементов живого сечения
- •6. Рекомендации по выполнению расчетов каналов при равномерном движении
- •7. Расчет каналов замкнутого сечения
- •1. Формы свободной поверхности потока в открытых призматических руслах с прямым уклоном дна
- •2. Формы свободной поверхности потока в открытых призматических руслах с нулевым и обратным уклоном дна
1. Формы свободной поверхности потока в открытых призматических руслах с прямым уклоном дна
При рассмотрении в модуле 13 равномерного движения жидкости в открытых призматических руслах указывались условия, при соблюдении которых происходит равномерное движение. При нарушении этих условий, например при возведении в русле плотины (рис. 14.2) или перепада (рис. 14.3), движение станет равномерным, при этом глубины будут отличаться от нормальных. В зависимости от гидравлических условий, создающихся при возведении сооружений, и состояния потока глубины могут по длине потока увеличиваться или уменьшаться по мере приближения к сооружению, а скорости при этом будут соответственно уменьшаться или увеличиваться.
Проанализируем формы свободной поверхности потока в открытых призматических руслах при уклонах дна i > 0. Учтем, что след свободной поверхности на продольной вертикальной плоскости будет криволинейным. Эти следы являются кривыми свободной поверхности. Для анализа используем уравнение (12.7), записав его в виде:
(14.1)
где
– расходная характеристика при
равномерном движении;
К – расходная характеристика при неравномерном движении;
– параметр
кинетичности.
Напомним,
что
=1
при критическом состоянии потока,
<1
при спокойном состоянии потока и
>1–
при бурном состоянии потока.
Равенство
числителя уравнения (14.1) нулю соответствует
равномерному движению, когда
.
Если знаменатель стремится к нулю, то
есть
→ 1, то
и свободная поверхность скачкообразно
повышается (или понижается). В первом
случае происходит переход потока из
бурного состояния в спокойное – так
называемый гидравлический прыжок. Во
втором случае образуется водопад (рис.
14.2).
Когда числитель и знаменатель не равны нулю, возможны различные сочетания знаков числителя и знаменателя в (14.1). Как указывалось в модуле 12, при > 0 глубина вдоль потока непрерывно и плавно увеличивается (кривая подпора), а при < 0 непрерывно и плавно уменьшается (кривая спада). Следовательно, имеем две основные формы кривых свободной поверхности в открытых призматических руслах: кривые подпора при > 0 и кривые спада при < 0.
В зависимости от конкретных условий кривые подпора и спада могут иметь различные особенности. Как отмечено в модуле 12, в зависимости от уклона дна равномерное движение при данном расходе Q может происходить:
а) при
спокойном состоянии потока (
>
),
если
<
;
б) при бурном состоянии потока ( < ), если > ;
в) при критическом состоянии потока ( = ), если = .
Д
ля
анализа условий образования кривых
свободной поверхности зафиксируем при
> 0 зоны в потоке, определяемые
и
(рис.
14.1), проведем также параллельно линии
дна линии нормальной NN
и критической КК
глубин. Тогда получаются следующие
зоны, в которых может располагаться
кривая свободной поверхности: зона а
– выше линии NN
и КК;
зона b
–
между линиями NN
и КК;
зона с
–
ниже линии NN
и КК.
При = линии NN и КК совмещены и имеются только зоны а и с. При i > 0 возможны восемь случаев образования кривых свободной поверхности.
I. Уклон дна < , то есть при равномерном движении поток находится в спокойном состоянии, > .
Зона
а:
>
>
(рис. 14.2). Пусть вследствие возведения
плотины имевшееся в бытовых (ненарушенных)
условиях равномерное движение с глубиной
на участке некоторой длины перешло в
неравномерное движение с глубинами
>
.
При этом
>
,
/
< 1. Учитываем, что при спокойном
состоянии потока
< 1, при увеличении h
по сравнению с
параметр
будет еще уменьшаться по сравнению с
при равномерном движении, поэтому 1 –
> 0.
Формулу (14.1) условно можно представить только знаками числителя и знаменателя, тогда получим
.
Таким
образом, имеем расположенную в зоне а
кривую подпора Iа
вогнутой формы (так как
> 0). Проанализируем поведение кривой
подпора Iа
в верхней (по течению) и в нижней (по
течению) частях. При
→
получим, что
→
и
→ 0, то есть кривая подпора Iа
в верхней части асимптотически стремится
к линии нормальных глубин NN,
то есть пересекается с этой линией лишь
в бесконечности. Для крупных сооружений
на равнинных реках длина кривой подпора
может достигать нескольких сотен
километров.
При возрастании h и К числитель и знаменатель (14.1) стремятся к единицы, так как / → 0 и (1 – ) → 1. Тогда → i, то есть кривая подпора в нижней части асимптотически стремится к горизонтальной прямой.
Зона b: > h > (рис. 14.3). В этом случае равномерное движение вследствие создания перепада перешло в неравномерное. Здесь < ; / < 1, а < 1. Тогда (14.1) можем представить как:
.
Глубины по длине потока уменьшаются, то есть в рассматриваемом случае имеем кривую спада Id, располагающуюся в зоне b. Эта кривая асимптотически стремится к линии нормальных глубин NN в верхней своей части, так как → , → 0. В нижней части при подходе потока к уступу условия плавной изменяемости, положенные в основу вывода дифференциального уравнения, принимаемого здесь в виде (12.8), не выполняются. Кривизна линий тока становится столь большой, что распределение давления по живому сечению значительно отличается от гидростатического.
Кривая спада Ib располагается в зоне b и обращена выпуклостью вверх. Укажем, что в сечении 1–1, то есть выше уступа на расстоянии, равном (2 – 2,5)· , кривая свободной поверхности пересекает линию критических глубин. Строго говоря, применение (15.8) вблизи входа в перепады, то есть на участке между 1–1 и 1'–1', неправильно. При расчете достаточно длинных русл иногда условно считают, что глубина над ребром уступа равна .
Зона с: > >h (рис. 14.4). Поток поступает на участок сопряжения бьефов за водосливной плотиной в бурном состоянии, а в естественных (бытовых) условиях находится в спокойном состоянии. От глубины, образующейся у подножья водослива, ниже по течению движения будет неравномерным. Глубины при этом будут увеличиваться, скорости уменьшаться, образуется кривая подпора Iс.
Действительно, на участке кривой подпора Iс глубины h < , то есть / > 1, а > 1. Следовательно, > 0. Кривая подпора располагается в зоне с, так как перейти через линию критических глубин плавным образом кривая свободной поверхности не может, что видно на графике изменения удельной энергии сечения Э (см. рис. 12.3). В рассматриваемом случае h < и уменьшение Э до минимума, а затем последующее увеличение удельной энергии сечения и продолжение движения невозможны.
Кривая свободной поверхности имеет вогнутую форму (выпуклостью обращена вниз) и заканчивается в том сечении, где начинается гидравлический прыжок.
Анализ остальных кривых подпора и спада проведем, помня, что каждая кривая свободной поверхности формируется непрерывно только в границах своей зоны.
II. Уклон дна > , то есть при равномерном движении поток находится в бурном состояния, < .
Зона а: h > > (рис. 14.5). В этом случае > ; / < 1. Так как h > , то в пределах рассматриваемой кривой < 1. Тогда > 0 и кривая подпора IIа расположена в зоне а. Кривая имеет выпуклую форму, в нижней части асимптотически приближается к горизонтальной линии (снизу от этой линии), так как при h → ∞ отношение → i. Кривая подпора IIа образуется ниже гидравлического прыжка по течению, через который происходит переход потока из бурного состояния в спокойное.
Зона b: > h > (рис. 14.6). В этом случае > ; / < 1. При h < параметр > 1. Тогда имеем кривую спада IIb.
При h → кривая асимптотически стремится к линии нормальных глубин NN. Можно считать, что глубина, с которой начинается плавная кривая спада в этой зоне, равна . Ширина канала b на первом и на втором участках канала одинакова. Следовательно, будет одной и той же на обоих участках. Но вблизи перелома дна в верхней части кривой движение только условно считается плавно изменяющимся. Кривая спада IIb имеет вогнутую форму.
Зона
с:
>
>
h (рис.
14.7). Здесь
>
,
а
> 1. Тогда
> 0 и имеем кривую подпора IIс.
В данном случае начальная глубина
определяется расчетом истечения из-под
вертикального плоского затвора. В нижней
части кривая IIс
асимптотически стремится к линии
нормальной глубины, так как при h
→
отношение
→ 0. Кривая IIс
имеет выпуклую форму.
III. Уклон дна = , то есть при равномерном движении поток находится в критическом состоянии, = . В этом случае имеются лишь две зоны: а и с.
Зона а: h > = (рис. 14.8). В этом случае > ; < 1. Тогда > 0, то есть имеем кривую подпора. Такая кривая образуется при сопряжении потока, находящегося в критическом состоянии, с потоком, находящегося в русле с < (рис. 14.8). В широких руслах кривая подпора в зоне а близка к горизонтальной прямой.
Зона с: h < = (рис. 14.8). В этом случае < ; > 1. Из уравнения (14.1) имеем > 0, и кривая свободной поверхности – кривая подпора IIIс. Такая кривая создается при сопряжении двух потоков, если уклон подводящего русла > , то есть < , а уклон отводящего русла = (рис. 14.8). В широких руслах кривая подпора в зоне с также близка к горизонтальной прямой.