Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Studmed_ru_sazanov-ii-gidravlika_d8b270ae6c6.doc
Скачиваний:
48
Добавлен:
21.09.2019
Размер:
4.51 Mб
Скачать

Постепенное сужение потока

Т акое сопротивление представляет собой коническую сходящуюся трубку – конфузор. Течение в конфузоре сопровождается постепенным увеличением скорости и одновременным снижением давления. По этой причине условия для вихреобразования на конической поверхности отсутствуют. Потери в этой части местного сопротивления происходят только за счёт трения. Вихреобразование может происходить только в узкой части трубы. Его природа аналогична природе подобного вихря при внезапном сужении потока, однако величина существенно меньше. В большинстве работ по гидравлике указывается, что эта величина столь незначительна по сравнению с потерями на трение в конической части конфузора, что ею можно пренебречь.

С учётом сказанного, величину этих потерь можно определить по формуле, вывод которой аналогичен выводу формулы потерь на трение в диффузоре. Она имеет вид:

.

Выражение для определения коэффициента потерь на трение в конфузоре будет иметь вид:

.

Внезапный поворот потока

Т акое местное сопротивление, называемое обычно коленом, очень сильно влияет на потери напора. В нём происходит отрыв потока от стенки трубы и создаются две сложные вихревые зоны, в которых интенсивно теряется энергия. Степень интенсивности существенно зависит от угла поворота . Коэффициент местного сопротивления значительно возрастает с увеличением угла поворота, и его можно определить по эмпирической формуле

.

В гидросистемах подобных местных сопротивлений рекомендуется избегать.

Плавный поворот потока

Постепенный поворот трубы (отвод или закруглённое колено) значительно уменьшает вихреобразование и, следовательно, потери энергии. Величина потерь существенно зависит от отношения и угла .

Коэффициент местного сопротивления для плавного поворота можно определить по экспериментальным формулам. Для поворота под углом 900 и он равен

;

для угла поворота более 1000

;

для угла поворота менее 700

.

Лекция 15. Критерии подобия

В процессе проектирования различных гидросистем, трубопроводов, гидротехнических сооружений, гидравлических и газовых систем химических и нефтехимических предприятий нередко возникает необходимость не только математического, но и натурного моделирования. В таком случае необходимо, чтобы работа гидросистемы действующей модели соответствовала функционированию реального объекта. Это означает, что различные характеристики потоков жидкости, которые имеют место в модели и в реальной системе, должны описываться одинаковыми закономерностями, хотя их численные значения могут существенно различаться. В натурной модели они меньше (как правило) или больше (встречается реже), чем в действительности. Для этого необходимо иметь критерии, которые позволяли ли бы «масштабировать» реальную систему. Эти критерии устанавливаются в теории подобия потоков жидкости.

Основы теории подобия, геометрическое и динамическое подобие

Гидродинамическое подобие - это подобие потоков несжимаемой жидкости, включающее в себя подобие геометрическое, кинематическое и динамическое.

Из геометрии известно, что геометрическое подобие означает пропорциональность сходственных размеров и равенство соответствующих угло в. В гидравлике под геометрическим подобием понимают подобие тех поверхностей, которые ограничивают потоки жидкости, Таким образом в гидравлике геометрическое подобие означает подобие русел или трубопроводов, по которым течёт жидкость.

Кинематическое подобие это подобие линий тока и пропорциональность сходственных скоростей. Это значит, что для кинематического подобия потоков требуется соблюдение геометрического подобия.

Динамическое подобие заключается в пропорциональности сил, действующих на сходственные элементы кинематически и геометрически подобных потоков, и равенство углов, характеризующих направление действия этих сил.

В потоках жидкостей (в нашем случае в трубопроводах, в гидромашинах и т.д.) обычно действуют разные силы – силы давления, силы вязкого трения, силы тяжести, инерционные силы. Соблюдение пропорциональности всех сил, действующих в потоке, означает полное гидродинамическое подобие.

На практике полное гидродинамическое подобие достигается редко, поэтому обычно приходится ограничиваться частичным (неполным) гидродинамическим подобием, при котором имеется пропорциональность лишь основных сил.

Записывается подобие следующим образом. Например, пропорциональность сил давления Р и сил трения Т, действующих в потоках I и II, можно записать в виде

.