
- •Лекция 1. Введение
- •Зачем гидравлика в машиностроении?
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Эксплуатационные свойства жидкостей
- •Изменение характеристик рабочих жидкостей
- •Загрязнение во время поставки, хранения и заправки
- •Загрязнение в процессе изготовления, сборки и испытания
- •Загрязнение в процессе эксплуатации
- •Распад жидкости под действием различных факторов
- •Последствия загрязнения рабочей жидкости
- •Применяемые жидкости
- •Лекция 4. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 5. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Лекция 6. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 7. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 8. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 9. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 10. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Лекция 11. Режимы течения жидкостей Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 12. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 13. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Лекция 14. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Лекция 15. Критерии подобия
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Лекция 16. Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Лекция 17. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Лекция 18. Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Лекция 19. Особые случаи ламинарного течения Ламинарное течение в зазорах Ламинарное течение в плоских зазорах
- •Ламинарное течение в плоских зазорах с подвижной стенкой
- •Ламинарное течение в кольцевых зазорах
- •Ламинарное течение в трубах прямоугольного сечения
- •Смазочный слой в подшипнике
- •Лекция 20. Особые режимы течения жидкостей
- •Кавитационные течения
- •Течение с облитерацией
- •Течение с теплообменом
- •Течение при больших перепадах давления
- •Список литературы
Лекция 13. Турбулентное течение жидкости
Напомним, что турбулентное движение жидкости отличается интенсивным вихреобразованием, приводящим к перемешиванию слоёв. В потоке наблюдаются постоянные пульсации давлений и скоростей, как по величине, так и по направлению. Турбулентное течение имеет неустановившийся характер, а траектории движения частиц жидкости постоянно и хаотически меняются. На практике такое движение встречается достаточно часто при высоких скоростях потока и малой вязкости жидкости. Вследствие того, что при турбулентном течении потока нет слоистости, закон трения Ньютона неприменим. По причине сложности турбулентного движения и его аналитического исследования, пока нет достаточно строгой теории этого течения. Существует полуэмпирическая приближённая теория Прандтля, элементы которой будут затронуты ниже, при рассмотрении вопроса о вязком трении в турбулентных потоках.
Потери энергии (потери напора на трение) при турбулентном течении жидкости больше, чем при ламинарном, из-за значительных потерь на вихреобразование, перемешивание и изменение траекторий.
В
гидравлике для практических расчётов
турбулентного течения жидкости в трубах
используют экспериментальные
систематизированные данные, применяемые
на основе теории подобия. Основной
расчётной формула для определения
потерь напора в круглых трубах является
уже известная формула Дарси
,
однако коэффициент
,
в данном случае это коэффициент
на трение по длине при турбулентном
течении,
и он существенно отличается от
,
используемом при ламинарном движении
жидкости.
Вязкое трение при турбулентном движении
Выделим в турбулентном
потоке, движущимся параллельно твёрдой
стенке, элементарную площадку ΔS
и определим касательное напряжение τ,
возникающее за счёт пульсаций скоростей
.
Через площадку в перпендикулярном
потоку направлении, проходит расход
жидкости
.
Масса жидкости, проходящая через площадку за время Δt, равна
За счёт составляющей
пульсаций скорости
эта масса получит приращение количества
движения
.
Приращение количества движения равно импульсу силы, т.е.
;
где сила
и тогда касательное напряжение будет
равно
,
а его осреднённое по времени значение можно представить в виде
.
Определённое таким
образом касательное напряжение вычислить
очень трудно из-за неизвестных значений
и
,
поэтому, чаще всего рассматривается
приближённое решение.
Представим, что
малый объём жидкости, находящийся в
точке A
и имеющий скорость
,
в результате турбулентного перемешивания
переместился в точку B,
расположенную на расстоянии l
от точки A
приобрёл скорость
.
Будем считать, что пульсации скоростей и пропорциональны приращению скорости рассматриваемого объёма жидкости, т.е.
,
.
Тогда можно представить в виде
,
где коэффициент
пропорциональности включён в величину
l,
знак
совпадает со знаком производной
.
Величина l
носит называние путь
перемешивания.
Последнее уравнение обычно преобразовывают к виду
,
где СТ – коэффициент перемешивания, или коэффициент турбулентного обмена который равен
.
Полученное уравнение
аналогично уравнению касательного
напряжения при ламинарном режиме.
Коэффициент CТ
значительно превышает по величине
динамическую вязкость
и зависит от числа Рейнольдса.