
- •Лекция 1. Введение
- •Зачем гидравлика в машиностроении?
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Эксплуатационные свойства жидкостей
- •Изменение характеристик рабочих жидкостей
- •Загрязнение во время поставки, хранения и заправки
- •Загрязнение в процессе изготовления, сборки и испытания
- •Загрязнение в процессе эксплуатации
- •Распад жидкости под действием различных факторов
- •Последствия загрязнения рабочей жидкости
- •Применяемые жидкости
- •Лекция 4. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 5. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Лекция 6. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 7. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 8. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 9. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 10. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Лекция 11. Режимы течения жидкостей Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 12. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 13. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Лекция 14. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Лекция 15. Критерии подобия
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Лекция 16. Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Лекция 17. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Лекция 18. Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Лекция 19. Особые случаи ламинарного течения Ламинарное течение в зазорах Ламинарное течение в плоских зазорах
- •Ламинарное течение в плоских зазорах с подвижной стенкой
- •Ламинарное течение в кольцевых зазорах
- •Ламинарное течение в трубах прямоугольного сечения
- •Смазочный слой в подшипнике
- •Лекция 20. Особые режимы течения жидкостей
- •Кавитационные течения
- •Течение с облитерацией
- •Течение с теплообменом
- •Течение при больших перепадах давления
- •Список литературы
Струйная модель потока
В
гидравлике рассматривается струйная
модель движения жидкости,
т.е. поток представляется как совокупность
элементарных струек жидкости, имеющих
различные скорости течения uω.
Индекс ω
означает (напоминает), что в каждой точке
живого сечения скорости различны.
Элементарные струйки как бы скользят
друг по другу. Они трутся между собой и
вследствие этого их скорости различаются.
Причём, в середине потока скорости
наибольшие, а к периферии они уменьшаются.
Распределение скоростей по живому
сечению потока можно представить в виде
параболоида с основанием, равным ω.
Высота его в любой точке равна скорости
соответствующей элементарной струйки
uω.
Площадь элементарной струйки равна dω.
В пределах этой площади скорость можно
считать постоянной. Понятно, что за
единицу времени через живое сечение
потока будет проходить объём жидкости
Wt,
равный объёму параболоида. Этот объём
жидкости и будет равен расходу потока.
.
С учётом понятия средней скорости, которая во всех точках живого сечения одинакова, за единицу времени через живое сечение потока будет проходить объём жидкости (обозначим его Wtср ), равный:
Wtср =ωVср.
Если приравнять эти объёмы Wtср = Wt=параболоида, можно определить значение средней скорости потока жидкости:
В дальнейшем среднюю скорость потока жидкости будем обозначать буквой V без индекса ср.
При неравномерном движении средняя скорость в различных живых сечениях по длине потока различна. При равномерном движении средняя скорость по длине потока постоянна во всех живых сечениях.
Лекция 8. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
В
технологическом оборудовании чаще
всего рассматривают потоки, в которых
не образуются разрывы жидкости, т.е.
жидкость сплошь заполняет пространство.
Рассмотрим элементарную струйку несжимаемой жидкости при установившемся движении, в которой выделим два произвольных сечения 1-1 и 2-2, расположенные на некотором расстоянии одно от другого. Здесь dω1 и dω2 – площади, u1 и u2 – скорости, dQ1 и dQ2 – расходы элементарной струйки в соответствующих живых сечениях.
Очевидно, что
и
,
причём dQ1 втекает в рассматриваемый участок элементарной струйки, а dQ2 – вытекает.
Учтём, что форма элементарной струйки не изменяется с течением времени, а поперечный приток и отток невозможны, так как скорости на боковой поверхности струйки направлены по касательным к линиям тока, из которых состоит эта боковая поверхность, тогда получаем, что расходы dQ1 и dQ2 равны, т.е.
Вследствие того, что сечения 1-1 и 2-2 выбраны произвольно, подобные соотношения справедливы для любых сечений элементарной струйки. Следовательно, можно записать:
или
Последнее соотношение называется уравнением неразрывности в гидравлической форме для элементарной струйки несжимаемой жидкости при установившемся движении.
Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
Если просуммировать расходы всех элементарных струек в каждом живом сечении потока, то получится уравнение неразрывности для потока при установившемся движении. Обычно его записывают в следующих видах:
или
или
Из сказанного видно, что для несжимаемой жидкости при установившемся движении жидкости расход во всех живых сечения потока одинаков, несмотря на то, что площади живого сечения и средние скорости в каждом сечении и могут быть разными.
Из уравнения неразрывности вытекает следующее важное соотношение:
т.е. средние скорости в живых сечениях потока обратно пропорциональны их площадям.
Уравнение неразрывности потока жидкости в гидравлической форме очень часто применяется в гидравлике для описания движения жидкости в каналах и трубопроводах.