Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Studmed_ru_sazanov-ii-gidravlika_d8b270ae6c6.doc
Скачиваний:
60
Добавлен:
21.09.2019
Размер:
4.51 Mб
Скачать

Прямолинейное равноускоренное движение сосуда с жидкостью

Если сосуд с жидкостью неравномерно движется, то на жидкость действуют силы веса и инерционные силы. Под их действием частицы жидкости принимают новое положение. Если движение равноускоренное, то новое положение оказывается равновесным, и жидкость находится в относительном покое. Свободная поверхность и поверхности уровня не горизонтальные. Форма этих поверхностей определяется величиной и направлением равнодействующей массовых сил. При этом равнодействующая всегда перпендикулярна поверхности (первое свойство гидростатического давления). Поверхности уровня не могут пересекаться, т.к. в этом случае в одной точке действовало бы два разных давления.

Р ассмотрим сосуд с жидкостью, движущийся с постоянным ускорением a.

Жидкость в этом сосуде займёт новое равновесное положение. Равновесие объёма жидкости описывается полным дифференциалом давления:

Определим давление в произвольной точке жидкости. Для этого возьмём произвольную точку M на расстоянии l от свободной поверхности. Кроме этого выберем систему координат, такую, что ось Z направлена по перпендикуляру к свободной поверхности. Такое расположение оси не изменит существа вывода, но математические выражения будут проще и более узнаваемы. Тогда при прямолинейном движении в выбранной системе координат:

Подставив эти значения в выражение для полного дифференциала, получим

После интегрирования будем иметь

Постоянную интегрирования C найдём из граничных условий на свободной поверхности, когда при , . Постоянная C примет вид . После подстановки получим в окончательном виде

.

Итоговая формула аналогична основному уравнению гидростатики, с той лишь разницей, что вместо глубины h используется расстояние от наклонной свободной поверхности l, а вместо ускорения свободного падения g - равнодействующее ускорение R.

Покой при равномерном вращении сосуда с жидкостью

Рассмотрим сосуд с жидкостью, вращающийся вокруг вертикальной оси с постоянной скоростью ω. На жидкость действуют внешнее давление, силы тяжести и инерционные силы. В результате их действия жидкость принимает новое равновесное положение. Свободная поверхность принимает форму параболоида. Рассмотрим на этой поверхности произвольную точку N. Равнодействующая сила R, действующая в т. N, перпендикулярна к свободной поверхности. Величина этой силы увеличивается с увеличением радиуса, а угол её наклона к горизонту уменьшается. Из этого следует, что наклон этой поверхности к горизонту увеличивается с ростом радиуса. Таким образом, сила R определяет форму свободной поверхности. Найдём математическую формулу этой кривой.

И з рисунка видно, что

Выразим отсюда dz :

Проинтегрировав, будем иметь:

.

Постоянную интегрирования найдём из известных условий: при . Подставив эти значения в последнее равенство, получим, что . В итоге будем иметь формулу, описывающую форму кривой, образующей свободную поверхность:

Теперь определим давление в жидкости, используя полный дифференциал давления

Для данного случая относительного покоя

С учётом этого полный дифференциал давления примет вид

Проинтегрируем эту функцию

Результатом интегрирования будет являться выражение

Учитывая, что , где r – радиус вращения, получим

Постоянную интегрирования C определим из условия, что при , тогда . Постоянная интегрирования с учётом принятых условий будет

Тогда формула, выражающая давление в жидкости, вращающейся с постоянной угловой скоростью, примет вид

Заметим, что в итоговом выражении первое слагаемое, характеризует давление внешней среды. Второе слагаемое описывает давление, созданное столбом жидкости, находящейся ниже точки 0, т.е. глубиной под уровнем нулевой точки. Третье слагаемое характеризуется высотой над точкой 0, и, следовательно, описывает давление, создаваемое жидкостью, поднимающейся по краям сосуда, причём эта величина зависит от расстояния точки от оси вращения. Таким образом, оказывается, что давление в каждой точке жидкости, вращающейся с постоянной скоростью относительно вертикальной оси, складывается из внешнего давления и давления столба жидкости над этой точкой.

Из приведённого анализа можно сделать следующий вывод. Сосуд с равномерно вращающейся жидкостью можно мысленно представить как совокупность сосудов, имеющих бесконечно малые площади. Давление в любой точке такого сосуда подчиняется основному уравнению гидростатики и подсчитывается привычным образом. Высота столба жидкости в сосудах зависит от частоты вращения и радиуса вращения реального сосуда. Отсюда становится понятно, что вариант равномерного вращения жидкости вокруг произвольно расположенной вертикальной оси (в начале лекции он отмечен цифрой 3) практически не отличается от уже рассмотренного.