
- •Лекция 1. Введение
- •Зачем гидравлика в машиностроении?
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Эксплуатационные свойства жидкостей
- •Изменение характеристик рабочих жидкостей
- •Загрязнение во время поставки, хранения и заправки
- •Загрязнение в процессе изготовления, сборки и испытания
- •Загрязнение в процессе эксплуатации
- •Распад жидкости под действием различных факторов
- •Последствия загрязнения рабочей жидкости
- •Применяемые жидкости
- •Лекция 4. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 5. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Лекция 6. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 7. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 8. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 9. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 10. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Лекция 11. Режимы течения жидкостей Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 12. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 13. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Лекция 14. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Лекция 15. Критерии подобия
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Лекция 16. Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Лекция 17. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Лекция 18. Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Лекция 19. Особые случаи ламинарного течения Ламинарное течение в зазорах Ламинарное течение в плоских зазорах
- •Ламинарное течение в плоских зазорах с подвижной стенкой
- •Ламинарное течение в кольцевых зазорах
- •Ламинарное течение в трубах прямоугольного сечения
- •Смазочный слой в подшипнике
- •Лекция 20. Особые режимы течения жидкостей
- •Кавитационные течения
- •Течение с облитерацией
- •Течение с теплообменом
- •Течение при больших перепадах давления
- •Список литературы
Прямолинейное равноускоренное движение сосуда с жидкостью
Если сосуд с жидкостью неравномерно движется, то на жидкость действуют силы веса и инерционные силы. Под их действием частицы жидкости принимают новое положение. Если движение равноускоренное, то новое положение оказывается равновесным, и жидкость находится в относительном покое. Свободная поверхность и поверхности уровня не горизонтальные. Форма этих поверхностей определяется величиной и направлением равнодействующей массовых сил. При этом равнодействующая всегда перпендикулярна поверхности (первое свойство гидростатического давления). Поверхности уровня не могут пересекаться, т.к. в этом случае в одной точке действовало бы два разных давления.
Р
ассмотрим
сосуд с жидкостью, движущийся с постоянным
ускорением a.
Жидкость в этом сосуде займёт новое равновесное положение. Равновесие объёма жидкости описывается полным дифференциалом давления:
Определим давление в произвольной точке жидкости. Для этого возьмём произвольную точку M на расстоянии l от свободной поверхности. Кроме этого выберем систему координат, такую, что ось Z направлена по перпендикуляру к свободной поверхности. Такое расположение оси не изменит существа вывода, но математические выражения будут проще и более узнаваемы. Тогда при прямолинейном движении в выбранной системе координат:
Подставив эти значения в выражение для полного дифференциала, получим
После интегрирования будем иметь
Постоянную
интегрирования C
найдём из граничных условий на свободной
поверхности, когда при
,
.
Постоянная C
примет вид
.
После подстановки получим в окончательном
виде
.
Итоговая формула аналогична основному уравнению гидростатики, с той лишь разницей, что вместо глубины h используется расстояние от наклонной свободной поверхности l, а вместо ускорения свободного падения g - равнодействующее ускорение R.
Покой при равномерном вращении сосуда с жидкостью
Рассмотрим сосуд с жидкостью, вращающийся вокруг вертикальной оси с постоянной скоростью ω. На жидкость действуют внешнее давление, силы тяжести и инерционные силы. В результате их действия жидкость принимает новое равновесное положение. Свободная поверхность принимает форму параболоида. Рассмотрим на этой поверхности произвольную точку N. Равнодействующая сила R, действующая в т. N, перпендикулярна к свободной поверхности. Величина этой силы увеличивается с увеличением радиуса, а угол её наклона к горизонту уменьшается. Из этого следует, что наклон этой поверхности к горизонту увеличивается с ростом радиуса. Таким образом, сила R определяет форму свободной поверхности. Найдём математическую формулу этой кривой.
И
з
рисунка видно, что
Выразим отсюда dz :
Проинтегрировав, будем иметь:
.
Постоянную
интегрирования найдём из известных
условий: при
.
Подставив эти
значения в последнее равенство, получим,
что
.
В итоге будем иметь
формулу, описывающую форму кривой,
образующей свободную поверхность:
Теперь определим давление в жидкости, используя полный дифференциал давления
Для данного случая относительного покоя
С учётом этого полный дифференциал давления примет вид
Проинтегрируем эту функцию
Результатом интегрирования будет являться выражение
Учитывая, что
,
где r
– радиус вращения, получим
Постоянную
интегрирования C
определим из условия, что при
,
тогда
.
Постоянная
интегрирования с учётом принятых условий
будет
Тогда формула, выражающая давление в жидкости, вращающейся с постоянной угловой скоростью, примет вид
Заметим, что в итоговом выражении первое слагаемое, характеризует давление внешней среды. Второе слагаемое описывает давление, созданное столбом жидкости, находящейся ниже точки 0, т.е. глубиной под уровнем нулевой точки. Третье слагаемое характеризуется высотой над точкой 0, и, следовательно, описывает давление, создаваемое жидкостью, поднимающейся по краям сосуда, причём эта величина зависит от расстояния точки от оси вращения. Таким образом, оказывается, что давление в каждой точке жидкости, вращающейся с постоянной скоростью относительно вертикальной оси, складывается из внешнего давления и давления столба жидкости над этой точкой.
Из приведённого анализа можно сделать следующий вывод. Сосуд с равномерно вращающейся жидкостью можно мысленно представить как совокупность сосудов, имеющих бесконечно малые площади. Давление в любой точке такого сосуда подчиняется основному уравнению гидростатики и подсчитывается привычным образом. Высота столба жидкости в сосудах зависит от частоты вращения и радиуса вращения реального сосуда. Отсюда становится понятно, что вариант равномерного вращения жидкости вокруг произвольно расположенной вертикальной оси (в начале лекции он отмечен цифрой 3) практически не отличается от уже рассмотренного.