
- •Лекция 1. Введение
- •Зачем гидравлика в машиностроении?
- •Жидкость как объект изучения гидравлики
- •Гипотеза сплошности
- •Лекция 2. Основные физические свойства жидкостей Плотность
- •Удельный вес
- •Относительный удельный вес
- •Сжимаемость жидкости
- •Температурное расширение жидкости
- •Растворение газов
- •Кипение
- •Сопротивление растяжению жидкостей
- •Вязкость
- •Закон жидкостного трения – закон Ньютона
- •Анализ свойства вязкости
- •Неньютоновские жидкости
- •Определение вязкости жидкости
- •Лекция 3. Эксплуатационные свойства жидкостей
- •Изменение характеристик рабочих жидкостей
- •Загрязнение во время поставки, хранения и заправки
- •Загрязнение в процессе изготовления, сборки и испытания
- •Загрязнение в процессе эксплуатации
- •Распад жидкости под действием различных факторов
- •Последствия загрязнения рабочей жидкости
- •Применяемые жидкости
- •Лекция 4. Гидростатика
- •Силы, действующие в жидкости Массовые силы
- •Поверхностные силы
- •Силы поверхностного натяжения
- •Силы давления
- •Свойства гидростатического давления
- •Основное уравнение гидростатики
- •Следствия основного уравнения гидростатики
- •Приборы для измерения давления
- •Лекция 5. Дифференциальные уравнения равновесия покоящейся жидкости
- •Частные случаи интегрирования уравнений Эйлера п окой жидкости под действием силы тяжести
- •Физический смысл основного закона гидростатики
- •Прямолинейное равноускоренное движение сосуда с жидкостью
- •Покой при равномерном вращении сосуда с жидкостью
- •Лекция 6. Давление жидкости на окружающие её стенки
- •Сила давления жидкости на плоскую стенку
- •Центр давления
- •Сила давления жидкости на криволинейную стенку
- •Круглая труба под действием гидростатического давления
- •Гидростатический парадокс
- •Основы теории плавания тел
- •Лекция 7. Кинематика жидкости
- •Виды движения (течения) жидкости
- •Типы потоков жидкости
- •Гидравлические характеристики потока жидкости
- •Струйная модель потока
- •Лекция 8. Уравнения неразрывности Уравнение неразрывности для элементарной струйки жидкости
- •Уравнение неразрывности в гидравлической форме для потока жидкости при установившемся движении
- •Дифференциальные уравнения неразрывности движения жидкости
- •Лекция 9. Динамика жидкостей
- •Дифференциальные уравнения Эйлера для движения идеальной жидкости
- •Преобразование уравнений Эйлера
- •Исследование уравнений Эйлера
- •Лекция 10. Интегрирование уравнений Эйлера
- •Уравнение Бернулли
- •Уравнение Бернулли для струйки идеальной жидкости
- •Геометрическая интерпретация уравнения Бернулли
- •Энергетическая интерпретация уравнения Бернулли
- •Уравнение Бернулли для потока идеальной жидкости
- •Уравнение Бернулли для потока реальной жидкости
- •Лекция 11. Режимы течения жидкостей Два режима течения жидкости
- •Физический смысл числа Рейнольдса
- •Основные особенности турбулентного режима движения
- •Возникновение турбулентного течения жидкости
- •Возникновение ламинарного режима
- •Лекция 12. Гидравлические сопротивления в потоках жидкости Сопротивление потоку жидкости
- •Гидравлические потери по длине
- •Ламинарное течение жидкости
- •Лекция 13. Турбулентное течение жидкости
- •Вязкое трение при турбулентном движении
- •Турбулентное течение в трубах
- •Турбулентное течение в гладких трубах
- •Турбулентное течение в шероховатых трубах
- •Выводы из графиков Никурадзе
- •Лекция 14. Местные гидравлические потери Местные гидравлические сопротивления
- •Виды местных сопротивлений Внезапное расширение. Теорема Борда - Карно
- •Внезапное сужение потока
- •Постепенное расширение потока
- •Постепенное сужение потока
- •Внезапный поворот потока
- •Плавный поворот потока
- •Лекция 15. Критерии подобия
- •Основы теории подобия, геометрическое и динамическое подобие
- •Критерии подобия для потоков несжимаемой жидкости Критерий подобия Ньютона
- •Критерий подобия Эйлера
- •Критерий подобия Рейнольдса
- •Критерий подобия Фруда
- •Заключение о подобии напорных потоков
- •Лекция 16. Истечение жидкости из отверстий и насадков
- •Сжатие струи
- •Истечение через малое отверстие в тонкой стенке
- •Истечение через насадки
- •Лекция 17. Гидравлический расчет трубопроводов
- •Простые трубопроводы постоянного сечения
- •Последовательное соединение трубопроводов
- •Параллельное соединение трубопроводов
- •Разветвлённые трубопроводы
- •Трубопроводы с насосной подачей жидкости
- •Лекция 18. Гидравлический удар в трубопроводах
- •Скорость распространения гидравлической ударной волны в трубопроводе
- •Ударное давление
- •П ротекание гидравлического удара во времени
- •Разновидности гидроудара
- •Лекция 19. Особые случаи ламинарного течения Ламинарное течение в зазорах Ламинарное течение в плоских зазорах
- •Ламинарное течение в плоских зазорах с подвижной стенкой
- •Ламинарное течение в кольцевых зазорах
- •Ламинарное течение в трубах прямоугольного сечения
- •Смазочный слой в подшипнике
- •Лекция 20. Особые режимы течения жидкостей
- •Кавитационные течения
- •Течение с облитерацией
- •Течение с теплообменом
- •Течение при больших перепадах давления
- •Список литературы
Последствия загрязнения рабочей жидкости
Надежность работы гидропривода находится в непосредственной зависимости от чистоты рабочей жидкости. В большинстве случаев наблюдаются следующие нарушения работы и повреждения, вызванные загрязнением:
затруднённость движения или полная остановка,
ошибки позиционирования привода,
отклонения от заданной скорости движения гидродвигателя,
скачкообразность движения привода при плавном изменении управляющего сигнала,
уменьшение жёсткости системы из-за увеличения утечек в гидроагрегатах,
порча поверхности штоков и валов гидродвигателей,
порча поверхности сёдел клапанов.
Эти повреждения значительно ухудшают качество выполняемых оборудованием технологических операций и ведут к производству бракованных изделий.
Кроме этого, наличие загрязнения в жидкости необходимо учитывать при разработке элементов гидросистем. Например: силы, требуемые для перемещения плунжеров распределителей, измеряемые десятыми долями Ньютона, могут при наличии загрязнения возрасти в сотни раз, вызвав нарушение нормальной работы гидросистемы и даже выход из строя отдельных её участков. Чтобы гарантировать надёжную работу, для преодоления сил трения плунжеров применяют электромагниты с большим тяговым усилием, достигающим 150 Н. Такие устройства имеют большие размеры и массу, и малый срок службы, так как большие инерционные силы, развиваемые якорем при его втягивании, быстро разбивают электромагнит, что ведёт к увеличению затрат на обслуживание системы. В то же время, большие пусковые токи требуют мощных контактных устройств в системах электропитания.
Загрязнения в жидкости существенно влияют также на срок службы гидроаппаратов и гидромашин. Жидкость со взвешенными твёрдыми частицами при течении с большой скоростью, достигающей в некоторых участках систем 300 м/с, притупляет, подобно абразивной эмульсии, кромки распределительных отверстий. От этого с течением времени увеличиваются зазоры, уменьшаются перекрытия, изменяются коэффициенты расхода и сопротивления сопел и точных (калиброванных) отверстий.
Из вышеизложенного следует, что необходимо постоянно контролировать степень чистоты рабочей жидкости во время заправки и работы оборудования, т.к. это может способствовать своевременному предупреждению отказов в работе гидросистем. Для каждой гидросистемы в зависимости от её назначения и выполняемых функций, планируемой надёжности и срока службы аппаратуры должна быть назначена определённая степень чистоты рабочей жидкости.
Определение класса чистоты рабочей жидкости.
В большинстве случаев для оценки степени чистоты жидкости используются следующие показатели:
масса частиц загрязнения в единице объема жидкости,
объем механических включений в единице объема жидкости,
количество частиц разных размеров в единице объема жидкости.
Степень чистоты рабочей жидкости определяется на основе нескольких стандартов: ГОСТ 6370 – 59, 10227 – 62, 10577 – 63 и других. Приведем пример некоторых из них. По ГОСТ 6370 – 59 жидкость считается чистой, если содержание загрязняющих частиц в ней не превышает 0,005 %, что составляет 50 мг/л. Общей массой частиц загрязнения нельзя до конца охарактеризовать степень загрязненности, так как при одинаковой массе количество частиц может сильно изменяться.
В ГОСТ 17216 – 2001 загрязненность определяется иначе. Этот стандарт устанавливает 19 классов чистоты рабочей жидкости (см. приложение), каждому из которых соответствует определенное число частиц различного размера, содержащихся в 0,1 л жидкости.
Международная ассоциация транспортной авиации рекомендует использовать в качестве рабочей среды жидкость с частицами загрязнения не больше 5 мкм и с ограниченным числом меньших размеров.
По проекту международной организации ИСО/ТК 131 классы чистоты жидкости устанавливаются по размерам частиц более 15 мкм.
Существуют и другие методы определения загрязненности рабочей среды.
Во всех случаях контроля чистоты жидкость должна быть перемешана, либо проба должна сниматься не позже одной минуты после остановки гидросистемы. Приспособление для извлечения пробы должно исключать проникновение в пробу частиц загрязнения извне как во время взятия, так и во время транспортирования, что обеспечивает проведение максимально точного анализа. Кроме перечисленных существует ещё целый ряд требований к проведению подобных анализов.
М
етод
анализа степени чистоты рабочей жидкости
ориентирован на ГОСТ
17216-2001,
который
учитывает
количество и размер частиц загрязнения
в 100 см3
жидкости и классифицирует жидкость по
19 классам чистоты. Обычно такой анализ
проводится следующим образом. С помощью
специального заборного устройства, по
внешнему виду и принципу действия
напоминающему шприц, набирается проба
жидкости в объёме 100
см3.
Далее эта жидкость пропускается через
фильтроэлемент, на котором остаются
частицы загрязнения.
После этого с
помощью микроскопа проводится подсчёт
частиц, осевших на фильтре с учетом их
размеров. Такой метод - очень длительный
и трудоёмкий процесс. При его использовании
субъективная погрешность оператора
может достигать 100%,
а время, затрачиваемое на анализ одной
пробы (одного фильтроэлемента), -
нескольких часов.