
- •Раздел 10. Основы анализа экспериментальных данных
- •29.2. Классификация погрешностей
- •30. Обзор программного обеспечения для выполнения анализа, обработки и представления экспериментальных данных
- •30.1. Математические (символьные) вычисления
- •30.2. Расчеты и статистическая обработка результатов
- •30.2.1. MathCad
- •30.2.2. Matlab - Scilab - Octave
- •30.3. Построение графиков
- •30.3.1. Sigma Plot
- •30.3.2. Origin
- •30.3.3. Gnuplot
- •30.4. Работа с текстом
- •30.4.1. Ms Word
- •30.4.2. OpenOffice.Org
- •31. Анализ результатов измерений случайной величины.
- •31.1. Гистограмма. Эмпирическое распределение результатов наблюдений
- •31.2. Результат измерения. Доверительный интервал
- •31.3. Нормальное или гауссово распределение
- •31.4. Выборочные дисперсия и среднеквадратичное отклонение
- •31.5. Среднеквадратичная ошибка среднего.
- •31.6. Приборная погрешность. Класс точности прибора.
- •31.7. Сложение случайной и приборной погрешностей. Полная погрешность измерения
- •31.8. Запись и округление результата измерения
- •32. Ошибки косвенных измерений
- •32.1. Функция одной переменной
- •32.2. Функция нескольких переменных
- •32.3. Ошибки и методика эксперимента
- •33. Анализ результатов совместных измерений
- •33.1. Цель и особенности эксперимента по определению функциональной зависимости
- •33.2. Некоторые определения
- •33.3. Интерполяция
- •33.3.1. Глобальная интерполяция
- •33.3.2. Локальная интерполяция
- •33.3.2.1. Кусочно-линейная интерполяция
- •33.3.2.2. Интерполяция кубическими сплайнами
- •33.3.2.3. Интерполирование b-сплайнами
- •33.4. Экстраполяция
- •33.5. Сглаживание данных
- •33.6. Регрессия
- •33.6.1. Выбор вида математической модели
- •33.6.2. Метод наименьших квадратов.
- •33.6.2.1. Линейная зависимость.
- •33.6.2.2. Линеаризация
- •33.6.2.3. Полиномиальная регрессия
- •33.6.2.4. Регрессия линейной комбинацией функций
- •33.6.2.5. Регрессия общего вида.
31.4. Выборочные дисперсия и среднеквадратичное отклонение
В
реальном эксперименте мы имеем дело с
выборкой конечного объема, а не с
генеральной совокупностью, подчиняющейся
нормальному закону. Поэтому чтобы
воспользоваться формулой для определения
случайной доверительной погрешности
результата измерения, необходимо найти
оценку параметра
и новые коэффициенты
(которые в этом случае будут также
зависеть от количества измерений
),
соответствующие выборке конечного
объема.
31.5. Среднеквадратичная ошибка среднего.
Допустим,
что
последовательных измерений некоторой
величины дали значения
. (31.13)
При этом число не обязательно должно быть большим - в обычных экспериментах оно равно 5 - 10. В качестве наилучшего значения интересующей нас величины лучше всего взять среднее
. (31.14)
Требуется определить, какова ошибка в величине .
Ошибку
-го
измерения мы напишем в виде
, (31.15)
где - истинное значение измеряемой величины, которое, конечно, неизвестно. Тогда ошибка среднего дается выражением
. (31.16)
Теперь
представим себе, что данные наблюдаются
сериями по
измерений в каждой, причем число таких
серий велико. Вся совокупность измеренных
значений характеризуется каким-то
распределением со среднеквадратичным
отклонением
.
В каждой серии имеется свое среднее
значение, и совокупность всех таких
средних характеризуется своим
распределением со среднеквадратичным
отклонением
.
В реальном эксперименте мы, конечно,
имеем дело лишь с одной серией из
измерений и одним средним значением.
Но мы хотим подчеркнуть, что эта серия
представляет собой случайную выборку
из полной совокупности отдельных
измерений, а среднее значение есть лишь
одно значение из полной совокупности
средних. Величина
называется среднеквадратичной ошибкой
среднего, и мы будем рассматривать ее
как меру ошибки среднего значения.
Величины и связаны простым соотношением. Действительно, для одной серии из измерений имеем
. (31.17)
Следовательно
. (31.18)
Усредним
это выражение по всем сериям. Среднее
величины
есть
.
Среднее каждого члена двойной суммы
равно нулю, поскольку ошибки
и
независимы и в среднем равны нулю. Итак,
мы получаем следующее равенство
. (31.19)
По определению
. (31.20)
Тогда равенство можно переписать в виде
, (31.21)
т.е.
среднеквадратичная ошибка среднего из
измерений в
меньше среднеквадратичной ошибки
отдельного измерения.
Величина
зависит только от точности отдельных
измерений и не зависит от их числа, тогда
как величину
можно уменьшить, увеличив
.
Но поскольку
уменьшается всего лишь как
,
повторять много раз измерение одной и
той же величины оказывается не очень
выгодным. Лучше попытаться уменьшить
,
снизив
,
т.е. повысив точность измерений.
Хотя соотношение (31.21) имеет важное значение, но оно не позволяет нам вычислить , так как мы не знаем величины . Для этой величины лучше всего было бы взять значение
, (31.22)
но - ошибки относительно истинного значения и поэтому нам неизвестны. Данное затруднение можно обойти, если оперировать с остатками.
Для -го измерения остаток дается равенством
. (31.23)
В
отличие от ошибки остаток - известная
величина. Обозначим среднеквадратичное
значение
остатков через
.
. (31.24)
Величина называется выборочным среднеквадратичным отклонением.
. (31.25)
Поэтому
. (31.26)
Все это относится к одной серии измерений. Усреднив, как и раньше, последнее равенство по большому числу серий, получим
, (31.27)
(31.28)
и
. (31.29)
Величина
нам не известна. В качестве ее наилучшей
оценки выберем
.
Подставляя эту величину в формулу и,
извлекая квадратный корень, получаем
(31.30)
Таким образом, мы приблизительно выразили величину через известные нам величины.