
- •Раздел 10. Основы анализа экспериментальных данных
- •29.2. Классификация погрешностей
- •30. Обзор программного обеспечения для выполнения анализа, обработки и представления экспериментальных данных
- •30.1. Математические (символьные) вычисления
- •30.2. Расчеты и статистическая обработка результатов
- •30.2.1. MathCad
- •30.2.2. Matlab - Scilab - Octave
- •30.3. Построение графиков
- •30.3.1. Sigma Plot
- •30.3.2. Origin
- •30.3.3. Gnuplot
- •30.4. Работа с текстом
- •30.4.1. Ms Word
- •30.4.2. OpenOffice.Org
- •31. Анализ результатов измерений случайной величины.
- •31.1. Гистограмма. Эмпирическое распределение результатов наблюдений
- •31.2. Результат измерения. Доверительный интервал
- •31.3. Нормальное или гауссово распределение
- •31.4. Выборочные дисперсия и среднеквадратичное отклонение
- •31.5. Среднеквадратичная ошибка среднего.
- •31.6. Приборная погрешность. Класс точности прибора.
- •31.7. Сложение случайной и приборной погрешностей. Полная погрешность измерения
- •31.8. Запись и округление результата измерения
- •32. Ошибки косвенных измерений
- •32.1. Функция одной переменной
- •32.2. Функция нескольких переменных
- •32.3. Ошибки и методика эксперимента
- •33. Анализ результатов совместных измерений
- •33.1. Цель и особенности эксперимента по определению функциональной зависимости
- •33.2. Некоторые определения
- •33.3. Интерполяция
- •33.3.1. Глобальная интерполяция
- •33.3.2. Локальная интерполяция
- •33.3.2.1. Кусочно-линейная интерполяция
- •33.3.2.2. Интерполяция кубическими сплайнами
- •33.3.2.3. Интерполирование b-сплайнами
- •33.4. Экстраполяция
- •33.5. Сглаживание данных
- •33.6. Регрессия
- •33.6.1. Выбор вида математической модели
- •33.6.2. Метод наименьших квадратов.
- •33.6.2.1. Линейная зависимость.
- •33.6.2.2. Линеаризация
- •33.6.2.3. Полиномиальная регрессия
- •33.6.2.4. Регрессия линейной комбинацией функций
- •33.6.2.5. Регрессия общего вида.
30.2. Расчеты и статистическая обработка результатов
30.2.1. MathCad
MathCAD является представителем нового поколения программных средств и предназначен для инженерных и математических расчетов. Он чрезвычайно прост в использовании и лёгок в освоении. Его интерфейс настолько удобно сделан, что пользователь работает с рабочим листом программы, как с листом бумаги, где он пишет формулы и математические выражения в их привычной нотации. Mathcad может выполнять вычисления любой степени сложности и ограничен лишь техническими возможностями вашей техники. Помимо численных расчетов, он может выполнять и символьные вычисления (здесь это называется "символьная математика"). Имеются обширные графические возможности. Помимо традиционных типов графиков можно строить поверхности, линии уровня и векторные поля.
Очень интересное и полезное изобретение разработчиков заключается в создании электронной книги, она называется "Центр ресурсов". В книге помещены многочисленные примеры решения типичных задач, причём их можно не только просматривать, но и переносить на свой рабочий лист обычной операцией копирования или буксировкой. Таких электронных книг по различным областям науки и техники существует великое множество и их можно извлекать с серверов Internet.
Рис. 30.2. Решение задачи сплайн – интерполяции экспериментальных данных в Mathcad
Mathcad Explorer. При расчетах и чтении MathCAD документов можно использовать бесплатную программу MathCAD Explorer, но эта программа не позволяет сохранить результаты расчетов. Последнюю версию программы вы можете скачать или с сайта MathSoft, или с образовательного математического сайте http://www.Exponenta.ru.
Ниже приведены еще две более специализированные программы, предназначенные для графического представления и статистической обработки различных данных. Программы легко интегрируются с MathCAD и могут использоваться с ним совместно дополняя друг друга.
S-Plus - мощная программа для статистической обработки и графического представления результатов измерений. Программа хорошо интегрируется с MathCAD и позволяет получать графическое представление расчетов в виде, готовом для публикации в отчете или дипломном проекте. Axum (по существу, облегченная версия S-Plus). Демонстрационные версии всех программ можно скачать на сайте MathSoft (http://www.mathsoft.com).
30.2.2. Matlab - Scilab - Octave
Системы компьютерной математики (СКМ) сегодня стали важнейшим рабочим инструментом во многих фундаментальных и прикладных науках. Их использование существенно облегчает исследователю жизнь, а зачастую вообще является единственным способом получения каких-либо значимых результатов. Однако для большинства отечественных пользователей коммерческие СКМ высшего класса (MathCAD, Mathematica, Maple и др.) слишком дороги. Разумным и фактически безальтернативным выходом представляется бесплатное ПО, и оказывается, в нем также встречаются весьма качественные разработки, одной из которых является Scilab.
Пакет Scilab является свободно распространяемой (вместе с исходными кодами) системой компьютерной математики. До недавнего времени он разрабатывался исследовательскими институтами INRIA и ENPC (оба находятся во Франции), а с мая 2003 г. поддержку продукта взял на себя специально созданный для этой цели Scilab Consortium, с Web-узла которого (http://scilabsoft.inria.fr/) можно загрузить последнюю версию программы и полный комплект документации (на момент подготовки материала была доступна версия 4.0). Scilab выпускается для операционных систем Windows (любая 32-разрядная версия), наиболее популярных Unix/Linux и не нуждается в больших системных ресурсах: инсталляционный модуль имеет размер до 20 MB, а для установки требуется немногим более 40 MB.
Пакет не случайно имеет название, созвучное с Matlab -- одной из наиболее мощных коммерческих СКМ. У обоих приложений немало общего -- от интерфейса и принципа взаимодействия с пользователем через командную строку до синтаксиса языка. Таким образом, Scilab можно рассматривать как облегченный вариант Matlab, который, впрочем, сохраняет основные возможности последнего.
Scilab является типичным командным интерпретатором и структурно состоит из интерпретирующей системы, принимающей команды пользователя и возвращающей результаты, и двух библиотек: собственных функций и дополнительных -- на языках С и Fortran.
Хотя Scilab является бесплатным продуктом, его вычислительные возможности, обеспеченные приблизительно тысячью встроенных функций, вполне соответствуют СКМ профессионального уровня.
Функции системы, относящиеся к некоторым прикладным областям математики и техники, собраны в дополнительные пакеты расширений (так называемые toolboxes). Одни из них применяются достаточно широко (как, скажем, методы численного решения краевых задач для систем дифференциальных уравнений, линейное и квадратичное программирование), другие имеют узкую специфическую направленность. Из последних назовем пакеты для цифровой обработки сигналов, анализа динамических систем, оптимизации со специальными ограничениями.
Scilab является надежной и мощной платформы для создания недорогих, но вполне конкурентоспособных решений в области обработки данных, численной реализации алгоритмов и визуализации. Поэтому если перед вами стоят подобные задачи, стоит обратить пристальное внимание на эту неординарную и доступную вычислительную систему.
Рис. 30.3. Рабочее окно, окно встроенного редактора программ и графическое окно Scilab.
Octave - интерактивная программная система с открытым исходным кодом для числовых вычислений и построения графиков. Она предназначена в основном для матричных вычислений: решения систем уравнений, вычисления собственных векторов и собственных значений и так далее. Во многих реальных технических задачах данные могут быть представлены как матрицы и векторы, и решение этих задач сводится к этим формам решения. Кроме того, Octave может представлять данные различным образом, а также имеет свой собственный язык программирования, который позволяет расширять систему. Об Octave можно говорить как об очень мощном, программируемом, графическом калькуляторе. Octave облегчит Вам решение широкого круга числовых задач и оставит больше времени на эксперимент и обдумывание более широкой проблеме.
Ценность Octave увеличивается еще и в связи с тем, что синтаксисом она совместима с MATLAB, который обычно используется в промышленности и науке.
Octave разработана для решения математических задач численно. Это означает, что Octave может не всегда давать точное решение задачи, и ее не должно путать с программами типа Mathematica или Maple, которые дают символьные решения, делая алгебраические манипуляции. Это не означает, что Octave лучше или хуже - она используется для решения своего круга задач. Самые реальные математические проблемы (особенно технические!) не имеют четких символьных решений.
Рис. 30.4. Программа Octave.
Octave и MATLAB широко используются инженерами и учеными и в промышленности и в науке для того, чтобы выполнять числовые вычисления, и для того, чтобы разработывать и проверять математические алгоритмы. Например, NASA использует ее для разработки космических кораблей; Jaguar Racing - чтобы отображать и анализировать данные, переданные от автомобилей Formula 1; Sheffield University - для разработки программного обеспечения для распознаваия злокачественных клеток.