
- •Цели и задачи автоматизации производственного процесса. Понятие об автоматическом контроле, регулировании и управлении.
- •Основные элементы структурных схем автоматического регулирования: объекта регулирования, автоматического регулятора.
- •Классификация асу по методу управления.
- •Классификация асу по характеру использования информации
- •Обыкновенные системы автоматического регулирования.
- •Самонастраивающиеся системы автоматического регулирования.
- •Основные функциональные элементы автоматических регуляторов.
- •Понятие об объекте автоматического регулирования и его основные свойства.
- •Определение основных свойств объектов по кривым разгона.
- •Уравнение статики и динамики и их способы решения.
- •Понятие о передаточной функции.
- •13.Понятие о типовых возмущающих воздействиях и их разновидности.
- •14.Основные типовые звенья систем автоматического регулирования.
- •15. Законы регулирования в непрерывных автоматических системах управления.
- •16.Понятие о качестве и устойчивости системы регулирования.
- •17.Влияние законов регулирования на показатели качества процесса регулирования.
- •18.Основные типы соединения звеньев.
- •19.Улучшения качества регулирования посредством введения корректирующего звена.
- •20.Прерывистые импульсные системы регулирования.
- •21. Прерывистые релейные типы регуляторов.
- •Понятие о температуре и термометрических свойствах. Классификация методов и средств измерения температуры. Разновидности погрешностей.
- •Жидкостные стеклянные термометры расширения, устройство и область применения.
- •Классификация манометрических термометров расширения и их конструкция.
- •25.Классификация механических термометров расширения, их устройство и область применения.
- •Физическая сущность и особенность работы термоэлектрических термометров. Схемы соединения термопар с вторичным прибором. Схемы измерения, преимущества и недостатки.
- •27. Конструкция термоэлектрических преобразователей постоянного и кратковременного действия. Требования предъявляемые к термопарам.
- •Объяснить влияние колебаний температуры свободных концов термопары на ее показания по градуировочной кривой.
- •Классификация термоэлектрических термометров.
- •Современные типы термоэлектрических преобразователей.
- •31. Работа комплекта термопара-милливольтметр. Погрешности, возникающие в процессе измерений. Устройство компенсационной коробки.
- •Компенсационный метод измерения температуры. Устройство и работа автоматических потенциометров.
- •Компенсационный метод измерения температуры. Работа и устройство потенциометров с ручной наводкой.
- •Классификация термометров сопротивления, физическая сущность работы, достоинства и недостатки. Вторичные приборы.
- •35. Конструкция и принцип работы термометров сопротивления.
- •Работа термометров сопротивления в паре с логометрами.
- •Уравновешенные мосты ручного и автоматического действия.
- •Бесконтактное измерение температуры. Законы, лежащие в основе работы пирометров. Понятие условной температуры. Погрешности, возникающие при измерении.
- •Пирометры частичного излучения, устройство, принцип действия, преимущества, недостатки.
- •Пирометры полного излучения, принцип действия, устройство, достоинства и недостатки.
- •Автоматическое регулирование давления в печи.
- •Понятие о давлении, его виды, единицы измерения. Классификация способов измерения давления и разряжения.
- •Конструкция и особенность работы жидкостных манометров.
- •Классификация деформационных манометров и их принцип работы.
- •Разновидности и принцип работы трубчатых деформационных манометров.
- •47. Принцип работы манометров, оснащенных автоматической системой сигнализации.
- •Область применения и конструкция напоромеров и тягомеров.
- •Принцип работы электрических приборов давления.
- •Жидкостные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Деформационные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Назначение, принцип работы и разновидности измерительных преобразователей.
- •Тензорезисторные передающие преобразователи.
- •Дифференциально-трансформаторная система передачи информации.
- •Электросиловая система передачи информации
- •Автоматическое регулирование соотношения расходов газа и воздуха (по коэффициенту α).
- •57. Совместное регулирование температуры и соотношения расходов газа и воздуха в пламенных печах.
- •58. Классификация средств измерения расхода, их устройство, область применения, преимущества и недостатки.
- •59.Принцип работы расходомеров постоянного перепада давления.
- •60.Принцип работы расходомеров переменного перепада давления
- •61.Типы и принцип работы тахометрических расходомеров.
- •62.Скоростные счетчики количества жидкости
- •63.Классификация средств измерения уровня.
- •I . Контактные методы
- •II . Бесконтактные методы
- •64.Конструкция и принцип работы механических и гидростатических уровнемеров.
- •65.Классификация и принцип работы электрических уровнемеров (емкостные и тепловые уровнемеры).
- •66. Методы и средства измерения состава газа.
- •67.Оптико-акустический (инфракрасный) газоанилизатор, принцип действия и область применения.
- •68.Термокондуктометрические газоанализаторы, принцип действия, устройство и применение.
- •69.Хромотографический метод анализа состава вещества, принцип действия и устройство.
66. Методы и средства измерения состава газа.
Оптические газоанализаторы основаны на использовании зависимости изменения того или иного оптического свойства анализируемой газовой смеси от изменения концентрации гзмеряемого компонента. В оптических газоанализаторах используются такие оптические свойства, как спектральное поглощение, оптическая плотность, показатель, преломления, спектральное излучение газовой смеси и др.
В соответствии с оптическим свойством, положенным в основу принципа работы прибора, оптические газоанализаторы подразделяются на следующие основные три группы:
1. Абсорбционные— основанные на поглощении лучистой энергии в инфракрасной области спектра (в том числе оптико-акустические), ультрафиолетовой и видимой областях спектра (фотоколориметрические жидкостные и ленточные).
2. Интерферометрические — основанные на использовании явления смещения интерференционных полос вследствие изменения оптической плотности газовой среды на пути одного из двух когерентных лучей.
3. Эмиссионные — основанные на излучении лучистой энергии,например на измерении интенсивности спектральных линий излучения компонента, зависящей от его концентрации в анализируемой газовой смеси. Этот метод, предложенный С. Эфришем, принято называть методом эмиссионного спектрального анализа газовой смеси.
Газоанализаторы, основанные на поглощении инфракрасных лучей, получили широкое применение в различных отраслях промышленности и применяются для определения концентрации окиси углерода (СО), двуокиси углерода (С02), метана (СН4), аммиака в сложных газовых смесях, а также и других газов. Это объясняется тем, что в инфракрасной области спектра газы имеют весьма интенсивные и отличительные друг от друга по положению в спектре полосы поглощения.Газоанализаторы, основанные на поглощении ультрафиолетовых лучей, применяются в химической, нефтяной и пищевой промышленности. Благодаря высокой чувствительности они широко используются для определения токсических и взрывоопасных концентраций различных газов в воздухе промышленных предприятий. Газоанализаторы этого типа позволяют определять содержание паров ртути, хлора и других газов и паров как в воздушной среде, таи в технологических газовых смесях.
Газоанализаторы фотоколориметрические, основанные на поглощении лучей в видимой области спектра, подразделяются на жидкостные и ленточные. Жидкостные газоанализаторы являются приборами с непосредственным (прямым) поглощением излучения определяемым компонентом при взаимодействии анализируемого компонента с жидким реактивом. В газоанализаторах второго типа измеряется светопоглощение поверхностью бумажной или текстильной лепты, предварительно пропитанной или смоченной соответствующим реактивом. Фотоколориметрические газоанализаторы широко применяют для измерения микроконцентрации различных газов в воздушной среде и в сложных газовых смесях. Эти газоанализаторы широко используются также для определения в воздухе промышленных предприятии токсической концентрации различных газов и паров, вредных для человека. Фотоколориметрические газоанализаторы для определения больших концентраций не применяются. Следует отметить, что фотоколориметрический метод находит широкое применение для анализа жидкостей, в частности для анализа воды на ТЭС.
Спектрофотометрические газоанализаторы, основанные на методе эмиссионного спектрального анализа газовой смеси, используются для анализа аргона, гелия, азота, водорода и кислорода на примеси.