
- •Цели и задачи автоматизации производственного процесса. Понятие об автоматическом контроле, регулировании и управлении.
- •Основные элементы структурных схем автоматического регулирования: объекта регулирования, автоматического регулятора.
- •Классификация асу по методу управления.
- •Классификация асу по характеру использования информации
- •Обыкновенные системы автоматического регулирования.
- •Самонастраивающиеся системы автоматического регулирования.
- •Основные функциональные элементы автоматических регуляторов.
- •Понятие об объекте автоматического регулирования и его основные свойства.
- •Определение основных свойств объектов по кривым разгона.
- •Уравнение статики и динамики и их способы решения.
- •Понятие о передаточной функции.
- •13.Понятие о типовых возмущающих воздействиях и их разновидности.
- •14.Основные типовые звенья систем автоматического регулирования.
- •15. Законы регулирования в непрерывных автоматических системах управления.
- •16.Понятие о качестве и устойчивости системы регулирования.
- •17.Влияние законов регулирования на показатели качества процесса регулирования.
- •18.Основные типы соединения звеньев.
- •19.Улучшения качества регулирования посредством введения корректирующего звена.
- •20.Прерывистые импульсные системы регулирования.
- •21. Прерывистые релейные типы регуляторов.
- •Понятие о температуре и термометрических свойствах. Классификация методов и средств измерения температуры. Разновидности погрешностей.
- •Жидкостные стеклянные термометры расширения, устройство и область применения.
- •Классификация манометрических термометров расширения и их конструкция.
- •25.Классификация механических термометров расширения, их устройство и область применения.
- •Физическая сущность и особенность работы термоэлектрических термометров. Схемы соединения термопар с вторичным прибором. Схемы измерения, преимущества и недостатки.
- •27. Конструкция термоэлектрических преобразователей постоянного и кратковременного действия. Требования предъявляемые к термопарам.
- •Объяснить влияние колебаний температуры свободных концов термопары на ее показания по градуировочной кривой.
- •Классификация термоэлектрических термометров.
- •Современные типы термоэлектрических преобразователей.
- •31. Работа комплекта термопара-милливольтметр. Погрешности, возникающие в процессе измерений. Устройство компенсационной коробки.
- •Компенсационный метод измерения температуры. Устройство и работа автоматических потенциометров.
- •Компенсационный метод измерения температуры. Работа и устройство потенциометров с ручной наводкой.
- •Классификация термометров сопротивления, физическая сущность работы, достоинства и недостатки. Вторичные приборы.
- •35. Конструкция и принцип работы термометров сопротивления.
- •Работа термометров сопротивления в паре с логометрами.
- •Уравновешенные мосты ручного и автоматического действия.
- •Бесконтактное измерение температуры. Законы, лежащие в основе работы пирометров. Понятие условной температуры. Погрешности, возникающие при измерении.
- •Пирометры частичного излучения, устройство, принцип действия, преимущества, недостатки.
- •Пирометры полного излучения, принцип действия, устройство, достоинства и недостатки.
- •Автоматическое регулирование давления в печи.
- •Понятие о давлении, его виды, единицы измерения. Классификация способов измерения давления и разряжения.
- •Конструкция и особенность работы жидкостных манометров.
- •Классификация деформационных манометров и их принцип работы.
- •Разновидности и принцип работы трубчатых деформационных манометров.
- •47. Принцип работы манометров, оснащенных автоматической системой сигнализации.
- •Область применения и конструкция напоромеров и тягомеров.
- •Принцип работы электрических приборов давления.
- •Жидкостные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Деформационные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Назначение, принцип работы и разновидности измерительных преобразователей.
- •Тензорезисторные передающие преобразователи.
- •Дифференциально-трансформаторная система передачи информации.
- •Электросиловая система передачи информации
- •Автоматическое регулирование соотношения расходов газа и воздуха (по коэффициенту α).
- •57. Совместное регулирование температуры и соотношения расходов газа и воздуха в пламенных печах.
- •58. Классификация средств измерения расхода, их устройство, область применения, преимущества и недостатки.
- •59.Принцип работы расходомеров постоянного перепада давления.
- •60.Принцип работы расходомеров переменного перепада давления
- •61.Типы и принцип работы тахометрических расходомеров.
- •62.Скоростные счетчики количества жидкости
- •63.Классификация средств измерения уровня.
- •I . Контактные методы
- •II . Бесконтактные методы
- •64.Конструкция и принцип работы механических и гидростатических уровнемеров.
- •65.Классификация и принцип работы электрических уровнемеров (емкостные и тепловые уровнемеры).
- •66. Методы и средства измерения состава газа.
- •67.Оптико-акустический (инфракрасный) газоанилизатор, принцип действия и область применения.
- •68.Термокондуктометрические газоанализаторы, принцип действия, устройство и применение.
- •69.Хромотографический метод анализа состава вещества, принцип действия и устройство.
Жидкостные дифференциальные манометры для измерения перепада давления и расхода жидкости.
Жидкостной дифманометр– это прибор, в котором перепад давления измеряется величиной гидростатического столба жидкости, уравновешивающего перепад. К жидкостным относятся трубные (U-образные), поплавковые, колокольные и кольцевые дифманометры.
Колокольный дифманометр представляет собой колокол, погружённый в жидкость и перемещающийся под влиянием разности давлений внутри (большее) и снаружи (меньшее) колокола.
Противодействующая измеряемому давлению сила создаётся утяжелением колокола (гидростатическое уравновешивание) или деформацией пружины, на которой подвешивается колокол (механическое уравновешивание).
Действие двухтрубного дифманометра (u-образный дифманометр) основано на использовании сообщающихся сосудов, заполненных жидкостью, столб которой одновременно является гидравлическим затвором и создаёт гидростатическое давление, противодействующее измеряемому. Один конец U-образной трубки, заполненной жидкостью, соединяют с замкнутым пространством, в котором надо измерить избыточное давление, а второй остаётся открытым (под барометрическим давлением).
Разность уровней жидкости в трубках показывает избыточное давление. Величина перемещения жидкости в трубке однотрубного Д. прямо пропорциональна измеряемому перепаду давлений и зависит от соотношения квадратов диаметров или площадей сечения трубки и сосуда.
Деформационные дифференциальные манометры для измерения перепада давления и расхода жидкости.
Деформационные манометры. Измеряемое давление или разность давлений определяется по деформации упругих чувствит. элементов: трубчатых манометрич. пружин - одно- и двухвитковых, S-образных, винтовых, геликоидальных, спиральных; плоских и гофрированных мембран; мембранных коробок; сильфонов; цилиндрич. трубок и стаканов. Под действием давления деформируется сечение пружины и происходит перемещение ее своб. конца, преобразуемое передаточным механизмом в перемещение стрелки, к-рая показывает давление по шкале. Конструктивно дифманометр состоит из двух частей-сильфонного блока и показывающей части. Сильфонный дифманометр. Принцип действия основан на использовании деформации упругой системы (сильфоны, цилиндрические пружины, торсионная трубка) при воздействии на нее измеряемого перепада давления. Механизм показывающей части собран в круглом корпусе диаметром и представляет собой трибко-секторный механизм, на оси которого установлена показывающая стрелка. В мембранных дифманометрах мембрана под воздействием давления прогибается, и по размеру прогиба происходит определение измеряемого давления.
Назначение, принцип работы и разновидности измерительных преобразователей.
Измери?тельный преобразова?тель — техническое средство с нормативными метрологическими характеристиками, служащее для преобразования измеряемой величины в другую величину или измерительный сигнал, удобный для обработки, хранения, дальнейших преобразований, индикации и передачи, но непосредственно не воспринимаемый оператором. ИП или входит в состав какого-либо измерительного прибора (измерительной установки, измерительной системы и др.), или применяется вместе с каким-либо средством измерений.
Классификация
По характеру преобразования:
Аналоговый измерительный преобразователь — измерительный преобразователь, преобразующий одну аналоговую величину (аналоговый измерительный сигнал) в другую аналоговую величину (измерительный сигнал);
Аналого-цифровой измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования аналогового измерительного сигнала в цифровой код;
Цифро-аналоговый измерительный преобразователь — измерительный преобразователь, предназначенный для преобразования числового кода в аналоговую величину.
По месту в измерительной цепи:
Первичный измерительный преобразователь — Первичный измерительный преобразователь - измерительный преобразователь, на который непосредственно воздействует измеряемая физическая величина. Первичный измерительный преобразователь является первым в преобразователем в измерительной цепи измерительного прибора;
Датчик — конструктивно обособленный первичный измерительный преобразователь;
Детектор — датчик в области измерений ионизирующих излучений;
Промежуточный измерительный преобразователь — измерительный преобразователь, занимающий место в измерительной цепи после первичного преобразователя.
По другим признакам:
Передающий измерительный преобразователь — измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации;
Масштабный измерительный преобразователь — измерительный преобразователь, предназначенный для изменения размера величины или измерительного сигнала в заданное число раз.
По принципу действия ИП делятся на генераторные и параметрические.