
- •Цели и задачи автоматизации производственного процесса. Понятие об автоматическом контроле, регулировании и управлении.
- •Основные элементы структурных схем автоматического регулирования: объекта регулирования, автоматического регулятора.
- •Классификация асу по методу управления.
- •Классификация асу по характеру использования информации
- •Обыкновенные системы автоматического регулирования.
- •Самонастраивающиеся системы автоматического регулирования.
- •Основные функциональные элементы автоматических регуляторов.
- •Понятие об объекте автоматического регулирования и его основные свойства.
- •Определение основных свойств объектов по кривым разгона.
- •Уравнение статики и динамики и их способы решения.
- •Понятие о передаточной функции.
- •13.Понятие о типовых возмущающих воздействиях и их разновидности.
- •14.Основные типовые звенья систем автоматического регулирования.
- •15. Законы регулирования в непрерывных автоматических системах управления.
- •16.Понятие о качестве и устойчивости системы регулирования.
- •17.Влияние законов регулирования на показатели качества процесса регулирования.
- •18.Основные типы соединения звеньев.
- •19.Улучшения качества регулирования посредством введения корректирующего звена.
- •20.Прерывистые импульсные системы регулирования.
- •21. Прерывистые релейные типы регуляторов.
- •Понятие о температуре и термометрических свойствах. Классификация методов и средств измерения температуры. Разновидности погрешностей.
- •Жидкостные стеклянные термометры расширения, устройство и область применения.
- •Классификация манометрических термометров расширения и их конструкция.
- •25.Классификация механических термометров расширения, их устройство и область применения.
- •Физическая сущность и особенность работы термоэлектрических термометров. Схемы соединения термопар с вторичным прибором. Схемы измерения, преимущества и недостатки.
- •27. Конструкция термоэлектрических преобразователей постоянного и кратковременного действия. Требования предъявляемые к термопарам.
- •Объяснить влияние колебаний температуры свободных концов термопары на ее показания по градуировочной кривой.
- •Классификация термоэлектрических термометров.
- •Современные типы термоэлектрических преобразователей.
- •31. Работа комплекта термопара-милливольтметр. Погрешности, возникающие в процессе измерений. Устройство компенсационной коробки.
- •Компенсационный метод измерения температуры. Устройство и работа автоматических потенциометров.
- •Компенсационный метод измерения температуры. Работа и устройство потенциометров с ручной наводкой.
- •Классификация термометров сопротивления, физическая сущность работы, достоинства и недостатки. Вторичные приборы.
- •35. Конструкция и принцип работы термометров сопротивления.
- •Работа термометров сопротивления в паре с логометрами.
- •Уравновешенные мосты ручного и автоматического действия.
- •Бесконтактное измерение температуры. Законы, лежащие в основе работы пирометров. Понятие условной температуры. Погрешности, возникающие при измерении.
- •Пирометры частичного излучения, устройство, принцип действия, преимущества, недостатки.
- •Пирометры полного излучения, принцип действия, устройство, достоинства и недостатки.
- •Автоматическое регулирование давления в печи.
- •Понятие о давлении, его виды, единицы измерения. Классификация способов измерения давления и разряжения.
- •Конструкция и особенность работы жидкостных манометров.
- •Классификация деформационных манометров и их принцип работы.
- •Разновидности и принцип работы трубчатых деформационных манометров.
- •47. Принцип работы манометров, оснащенных автоматической системой сигнализации.
- •Область применения и конструкция напоромеров и тягомеров.
- •Принцип работы электрических приборов давления.
- •Жидкостные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Деформационные дифференциальные манометры для измерения перепада давления и расхода жидкости.
- •Назначение, принцип работы и разновидности измерительных преобразователей.
- •Тензорезисторные передающие преобразователи.
- •Дифференциально-трансформаторная система передачи информации.
- •Электросиловая система передачи информации
- •Автоматическое регулирование соотношения расходов газа и воздуха (по коэффициенту α).
- •57. Совместное регулирование температуры и соотношения расходов газа и воздуха в пламенных печах.
- •58. Классификация средств измерения расхода, их устройство, область применения, преимущества и недостатки.
- •59.Принцип работы расходомеров постоянного перепада давления.
- •60.Принцип работы расходомеров переменного перепада давления
- •61.Типы и принцип работы тахометрических расходомеров.
- •62.Скоростные счетчики количества жидкости
- •63.Классификация средств измерения уровня.
- •I . Контактные методы
- •II . Бесконтактные методы
- •64.Конструкция и принцип работы механических и гидростатических уровнемеров.
- •65.Классификация и принцип работы электрических уровнемеров (емкостные и тепловые уровнемеры).
- •66. Методы и средства измерения состава газа.
- •67.Оптико-акустический (инфракрасный) газоанилизатор, принцип действия и область применения.
- •68.Термокондуктометрические газоанализаторы, принцип действия, устройство и применение.
- •69.Хромотографический метод анализа состава вещества, принцип действия и устройство.
Понятие о температуре и термометрических свойствах. Классификация методов и средств измерения температуры. Разновидности погрешностей.
Температура (от лат. temperatura — надлежащее смешение, нормальное состояние) — физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.
В Международной системе единиц (СИ) термодинамическая температура выражается в кельвинах, температура Цельсия — в градусах [1]. На практике часто применяют градусы Цельсия из-за привязки к важным характеристикам воды — температуре таяния льда (0° C) и температуре кипения (100° C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном.
Существуют также шкалы Фаренгейта и некоторые другие.
Измерение температуры
Для измерения температуры выбирается некоторый термодинамический параметр термометрического вещества. Изменение этого параметра однозначно связывается с изменением температуры. Большинство термометров измеряют собственную температуру. Средства измерения температуры обычно проградуированы по относительным шкалам — Цельсия или Фаренгейта.
На практике для измерения температуры используют
жидкостные и механические термометры,
термопару,
Термосопротивление
Термометр сопротивления
Газовый термометр
Пирометр
Жидкостные стеклянные термометры расширения, устройство и область применения.
Жидкостные стеклянные термометры
Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).
Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 1). Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.
В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.
Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.
Стеклянные жидкостные термометры имеют весьма широкое применение и выпускаются следующих основных разновидностей:
технические ртутные, с вложенной шкалой, с погружаемой в измеряемую среду нижней частью, прямые и угловые;
лабораторные ртутные, палочные или с вложенной шкалой, погружаемые в измеряемую среду до отсчитываемой температурной отметки, прямые, небольшого наружного диаметра;
жидкостные термометры (не ртутные);
повышенной точности и образцовые ртутные термометры;
электроконтактные ртутные термометры с вложенной шкалой, с впаянными в капиллярную трубку контактами для разрывания (или замыкания) столбиком ртути электрической цепи;
специальные термометры, в том числе максимальные (медицинские и другие), минимальные, метеорологические и другого назначения.