
- •1.Понятие культуры. Естественно-научная и гуманитарная культуры.
- •2.Культура, как фактор повышения комфортности жизни.
- •3.Современное естествознание и его роль в развитии человечества.
- •4.Методы познания мира, научный метод – основа научного познания (5 критериев). Наука и её краткая антология.
- •5.Закономерности в природе. Корпускулярная и континуальная концепции описания природы.
- •6.Основные закономерности перехода к постиндустриальному, информационному обществу, закономерности информационной революции.
- •7.Основные принципы в описании природы. Принцип относительности и элементы теории относительности.
- •8.Основные принципы описания природы. Принцип симметрии в природе.
- •9.Основные принципы в описании природы. Принцип дополнительности и соответствия. Соответствие в физике и биологии.
- •10.Понятие пространственно-временных моделей.
- •11.Понятие детерминизма в природе. Моделирование природных процессов в рамках этого подхода.
- •12.Понятие стахостичности в природе. Моделирование природных процессов в рамках этого подхода, расчёт доверительного интервала.
- •13.Понятие хаоса в природе. Моделирование природных процессов в рамках этого подхода.
- •14.Волновые свойства света и частиц, экспериментальные доказательства.
- •15.Квантовые свойства света и частиц, экспериментальные доказательства.
- •16.Законы сохранения и взаимодействия на макроуровне. Законы Ньютона.
- •17.Законы сохранения и взаимодействия на микроуровне (их относительность).
- •18.Строение атома и ядра. Силы взаимодействия в ядре.
- •19.Энторопия и законы её изменения в живой и неживой природе.
- •20.Связь между энтропией и информацией.
- •21. Примеры расчёта энтропии и информации в живой природе. Законы изменения информации в социуме.
- •22.Энтропийные аспекты развития вида Homo sapiens. Потребление полезных ископаемых и возможности энергетического процесса.
- •23.Порядок и хаос. Аттракторы и фракталы в фазовом пространстве.
- •24.Синергетика и управление в социуме с помощью лингвистики. Роль семантики в этом процессе. Примеры синергических и асинергических взаимоотношений.
- •25.Синергетика и принципы самоорганизации в обществе и живой природе.
- •26.Биологическая картина мира Уровни организации живой материи. Понятие иерархических систем и компартментно-кластерная теория биосистем.
- •27.Понятие жизни. Биологические уровни организации материи.
- •28.Биохимия и биофизика молекулярного и клеточного уровня организации материи. Строение клетки как компартмента живого.
- •29.Молекулярный уровень организации материи.
- •30.Принципы эволюции, воспроизводства и развития живых систем.
- •31.Человек и его эволюция. Принцип информационного изотропизма.
- •32.Простейшие модели развития человека.
- •33.Эволюция мозга и его универсальность в моделировании (отображении) всей окружающей действительности. Возможности человека и человечества.
- •34. Возможности человеческого познания и создания единой культуры.
- •35.Необратимость времени. Стохастика и хаос в эволюции человечества.
- •36.Идеи универсального эволюционизма.
- •37. Второе начало термодинамики для живых систем. Понятие закрытых и открытых систем.
- •38.Многообразие живых организмов, их взаимодействие.
- •39.Биосфера и космические циклы.
- •40.Человечество и динамика развития Вселенной.
- •41.Галактика и Вселенная (строение и развитие).
- •42.Практические модели живых систем (роста, развития, популяционного взаимодействия).
- •43.Теория Мальтуса, её ограничения.
- •44. Культура, как лимитирующий фактор в демографическом процессе. Модель Ферхюльста-Пирла.
- •45. Существование иных цивилизаций. Возможность контакта.
- •46. Генетика и эволюция. Основные этапы антропогенеза. Понятие генома человека.
- •47. Понятие физиологии и здоровья.
- •48. Эмоции, творчество, работоспособность человека в условиях Севера.
- •49. Элементы химической кинетики. Примеры уравнений.
- •50.Ноосфера.Теория Вернадского.
9.Основные принципы в описании природы. Принцип дополнительности и соответствия. Соответствие в физике и биологии.
Принцип дополнительности был сформулирован датским физиком Н. Бором в 1927 г. Это принципиальное положение квантовой механики, согласно которому получение информации об одних физических величинах, описывающих микрообъект, неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами являются, например, координата частицы и ее скорость (импульс). С точки зрения этого принципа, состояния, в которых взаимно дополнительные величины имели бы одновременно точно определенное значение, принципиально невозможны, причем если одна из таких величин определена точно, то значение другой полностью неопределенно. Принципом соответствия называется утверждение о том, что поведение квантово-механической системы стремится к классической физике в пределе больших квантовых чисел. Этот принцип ввёл Нильс Бор в 1923 году. В более широком смысле под принципом соответствия понимают утверждение о том, что любая новая физическая теория должна в некотором пределе воспроизводить результаты старой проверенной теории. Развитие физики - это не механическая замена старых теорий новыми, а процесс их последующего обобщения, когда новое отрицает старое ,с удержанием всего положительного.
10.Понятие пространственно-временных моделей.
Ради простоты рассмотрим движение вдоль прямой. Нашей координатной системой будет твердый стержень с началом, но без конца. Отметим на стержне различные точки; положение каждой из них может быть охарактеризовано только одним числом — координатной точки. Сказать, что координата точки равна 7,586 метра, означает, что все расстояние от начала стержня равно 7,586 метра. Наоборот, если кто-то задает любое число и единицу измерения, всегда можно найти точку на стержне, соответствующую этому числу. Каждому числу соответствует определенная точка на стержне, а каждой точке соответствует определенное число. Этот факт выражается математиками и следующем предложении: все точки стержня образуют одномерный континуум. Тогда существует точка, сколь угодно близкая к данной точке стержня. Мы можем связать две отдаленные точки на стержне рядом отрезков, расположенных один за другим, каждый из которых сколь угодно мал. Таким образом, тот факт, что отрезки, связывающие отдаленные точки, произвольно малы, является характеристикой континуума.
Пусть имеется поверхность прямоугольного стола. Положение точки на этом столе можно охарактеризовать двумя числами, а не одним, как раньше. Два числа суть расстояния от двух перпендикулярных краев стола. Не одно число, а пара чисел соответствует каждой точке плоскости. Другими словами: плоскость есть двухмерный континуум. Тогда существуют точки, сколь угодно близкие к данной точке плоскости. Две отдаленные точки могут быть связаны кривой, разделенной на отрезки, сколь угодно малые.
Еще один пример. Представим себе, в качестве системы координат рассматривать свою комнату. Это означает, что положение тела нужно определить относительно стен комнаты. Положение кончика лампы, если она в покое, может быть описано тремя числами; два из них определяют расстояние от двух перпендикулярных стен, а третье - расстояние от пола или потолка. Каждой точке пространства соответствуют три определенных числа; каждым трем числам соответствует определенная точка в пространстве. Это выражается предложением: наше пространство есть трехмерный континуум. Существуют точки, весьма близкие к каждой данной точке пространства. И опять произвольная малость отрезков линии, связывающей отдаленные точки, каждая из которых представлена тремя числами, есть характеристика трехмерного континуума.
В самом деле, для описания событий в природе нужно применить не два, а четыре числа. Физическое пространство, постигаемое через объекты и их движения, имеет три измерения, и положения объектов характеризуются тремя числами. Момент события есть четвертое число. Каждому событию соответствует четыре определенных числа; каким-либо четырем числам соответствует определенное событие. Поэтому: мир событий образует четырехмерный континуум. В этом нет ничего мистического, и последнее предложение одинаково справедливо и для классической физики, и для теории относительности. И опять различие обнаруживается лишь тогда, когда рассматриваются две системы координат, движущиеся друг относительно друга. Пусть движется комната, а наблюдатели внутри и вне ее определяют пространственно-временные координаты одних и тех же событий. Сторонник классической физики разобьет четырехмерный континуум на трехмерное пространство и одномерный временной континуум. Старый физик заботится только о преобразовании пространства, так как время для него абсолютно. Он находит разбиение четырехмерного мирового континуума на пространство и время естественным и удобным. Но с точки зрения теории относительности время, так же как и пространство, изменяется при переходе от одной системы координат к другой, и преобразования Лоренца рассматривают трансформационные свойства четырехмерного пространственно-временного континуума — нашего четырехмерного мира событий.