
- •2.Основные характеристики санитарно-показательных микроорганизмов
- •3.Микрофлора воздуха
- •4. Микробиология водоемов. Автохтонная, аллохтонная микрофлора. Сапробность водоемов.
- •5.Санитарно-микробиологическое исследование воды
- •6.Санитарно-микробиологическое исследование воды: определение санитарно-показательных микроорганизмов водоемов.
- •7. Цели санитарно-микробиологического исследования почвы. Периодичность и отбор проб. Подготовка и обработка почвы для анализа.
- •8. Санитарно-микробиологическое исследование почвы: индикаторные микроорганизмы для оценки санитарного состояния почвы.
- •11. Микробиология молока. Молоко как питательная среда для микроорганизмов. Фазы изменения микрофлоры молока при хранении. Обмен веществ, осуществляемый микроорганизмами в молоке.
- •12. Микробиология масла: сливочного, сладко-сливочного, кисло-сливочного, маргарина молочного. Виды порчи масла.
- •14.Микробиология сыра.
- •1 Подготовка молока к свертыванию
- •2 Свертывание и получение сырной массы
- •3 Стадия созревания
- •Органолептические и лаб методы кач. Сыра.
- •Классификация сорта и виды сыров
- •17. Микробиология яиц и яичных продуктов. Пути обсеменения яиц микрофлорой. Изменение качества яиц при хранении, пороки яиц
- •18.Микробиология мяса и мясных продуктов: пути и источники обсеменённости мяса микроорганизмами. Факторы, влияющие на развитие микроорганизмов при созревании мяса.
- •19.Микробиология мяса и мясных продуктов. Виды порчи мяса. Пищевые токсикоинфекции и токсикозы, передающиеся через мясо
- •20.Микробиология мяса и мясных продуктов: источники обсеменения колбасных изделий микрофлорой. Изменение микрофлоры фарша при изготовлении вареных и полукопченных колбас. Виды порчи колбас.
- •21.Нормальная микрофлора организма человека: значение микрофлоры, основные понятия, характеристика биотопов организма.
- •23.Микробная эволюция с позиций системной концепции зарождения биосферы. Пребиотический, переходной и биотический этапы зарождения биосферы.
- •25 Трофическая структура микробного сообщества, синтрофия, экологические ниши. Характеристика, особенности и распределение на группы психрофилов, термофилов.
- •26 Разнообразие биотических связей между микроорганизмами. Микориза высших растений. Эндо- и экзомикориза
- •27 Токсическое действие кислорода на микроорганизмы. Защитные механизмы от токсического действия кислорода.
- •28.Торможение жизненной активности: основные понятия, биохимическая и биологическая сущность тжа.
- •31. Состав бактериальных сообществ Земли, формировавшихся в процессе эволюции биосферы. Роль водных и наземных растений в формировании бактериальных сообществ.
- •37. Микробиологическое преобразование микроорганизмов различных форм азота. Молекулярно-генетический уровень симбиотической азотфиксации.
- •38.Микробиологические и биохимические аспекты очистки сточных и промышленных вод. Формирование и состав микробных сообществ и консорциумов.
- •39.Биология дрожжей и экология дрожжей. Цитология, морфология, бесполое, половое размножение и жизненные циклы дрожжей. Местообитания в природе. Промышленное использование. Систематика дрожжей.
26 Разнообразие биотических связей между микроорганизмами. Микориза высших растений. Эндо- и экзомикориза
Помимо того, что микроорганизмы (бактерии, грибы, вирусы и др.) часто являются паразитами высших растений, очень велика их биогеоценотическая роль в почве. Своей деятельностью в почве они разрушают одни соединения, органические и неорганические, и создают другие, новые вещества, в том числе и газообразные, чем влияют на атмосферу и почву. Участвуя в превращении веществ в почве, микроорганизмы оказывают то положительное, то отрицательное влияние на рост и развитие высших растений. Так, клубеньковые бактерии, живущие на корнях бобовых и некоторых других растений, усваивают свободный азот, используемый затем высшими растениями. С другой стороны, корневые выделения высших растений сильно влияют на микробное население почвы.
Одновременно микроорганизмы прямо или косвенно находятся во взаимодействии с животными (как позвоночными, так и беспозвоночными).
– отношения между организмами, обычно разных видов и находящихся в более или менее длительном контакте, при которых один или оба организма извлекают из этих отношений пользу и ни один не испытывает ущерба. Первый тип симбиотических отношений, когда пользу извлекают оба организма, называется мутуализмом, второй, когда пользу извлекает лишь один из организмов, – комменсализмом («нахлебничеством»).
Мутуализм
Симбиоз азотфиксирующих организмов с голосеменными и цветковыми растениями – отношения между высшим растением и бактериями. На корнях многих растений встречаются клубеньки, образованные бактериями или реже грибами. Клубеньковые бактерии фиксируют атмосферный азот и переводят его в доступную для высших растений форму.
ПРИМЕРЫ. Клубеньки на корнях растений из семейства бобовых образованы бактериями из рода ризобиум (Rhyzobium), а также на корнях видов лисохвоста, лоха, облепихи, подокарпуса, ольхи (Actinomyces alni) и других растений. Благодаря этому растения, зараженные клубеньковыми бактериями, могут хорошо расти на почвах, бедных азотом, а содержание азота в почве после культуры таких растений возрастает. В свою очередь бактерии получают от высших растений углеводы.
Бактериальные желвачки с азотом были обнаружены не только на корнях, но и в листьях многих представителей семейств мирсиновых, диоскорейных, мареновых, примерно 370 видов растений. Бактерии, образующие эти клубеньки, проникают в листья через устьица еще тогда, когда листья свернуты в почках. Они фиксируют азот как клубеньковые бактерии, и отношения их с цветковыми растениями также носят характер взаимного паразитизма.
Микориза – симбиотические отношения между высшим растением и грибом. Микоризы широко распространены среди диких и культурных растений. В настоящее время микориза известна более чем для 2000 видов высших растений (Федоров, 1954), но, несомненно, действительное число видов, для которых характерна микориза, значительно больше.
Для высших растений, на корнях которых поселяются грибы, характерен особый тип питания – микотрофный. При микотрофном питании с помощью симбиотических грибов высшее растение получает зольные элементы пищи, в том числе азот, из органического вещества почвы. Что касается грибов, образующих микоризу, то они в большинстве не могут существовать без корневых систем высших растений, всасывающих влагу из почвы и поставляющих из кроны органическое вещество.
Деревья растут гораздо лучше с микоризой, чем без нее. Различают два основных вида микоризы: эктотрофную и эндотрофную. При эктотрофной микоризе корень высшего растения окутывается плотным грибным чехлом, от которого отходят много численные гифы гриба. При эндотрофной микоризе мицелий гриба проникает в клетки корневой паренхимы корня, которые сохраняют свою жизнедеятельность. Промежуточную форму микоризы, при которой имеет место и наружное обрастание корня гифами гриба, и проникновение гифов внутрь корня, называют перитрофной (эктоэндотрофной), микоризой.
Эктотрофная микориза – однолетняя. Она развивается летом или осенью и погибает к следующей весне. Она свойственна многим деревьям из семейств сосновых, буковых, березовых и др., а также некоторым травянистым растениям, например подъельнику. Эктотрофную микоризу чаще всего образуют базидиальные грибы из семейства Polyporaceae и особенно часто из рода Boletus. Так, подберезовик (В. scaber) образует микоризу на корнях березы, масленок – на корнях лиственницы (В. elegans) или сосны и ели (В. luteus), подосиновик (В. versipellis) – на корнях осины, белый гриб (В. edulus) – на корнях ели, дуба, березы (различные подвиды) и т. д.
Эндотрофная микориза широко распространена у растений семейств орхидных, вересковых, брусничных, а также у многолетних трав из семейства сложноцветных и у некоторых деревьев, на пример у красного клена (Acer rubrum) и др. В качестве второго компонента эндотрофной микоризы часто выступает гриб Phoma из группы несовершенных грибов. Эндотрофная микориза может быть образована Oreomyces (живет на корнях орхидей, по-видимому, может фиксировать азот) и некоторыми другими видами грибов.
Как предполагалось ранее, этот гриб может усваивать азот из атмосферы. Это обстоятельство связано с тем, что вереск (Calluna) и другие представители семейства вересковых, а также виды семейства орхидных могут развиваться на безазотистой среде только в присутствии этого гриба.
В отсутствие Phoma betake у этих растений не прорастают семена или гибнут проростки вскоре после прорастания семян. Гибель проростков у орхидей, грушанок и других лесных растений можно объяснить тем, что в их семенах почти полностью отсутствуют запасные питательные вещества в клетках, и поэтому без гифов гриба, доставляющих необходимые питательные вещества всходам, их развитие быстро прекращается.
В сосновых лесах Центрального Предуралья (Логинова, Селиванов, 1968) насчитывается следующее содержание микотрофных видов в лесной микофлоре:
в бору-беломошнике – 81%,
в бору-брусничнике – 85,
в бору-черничнике – 90,
в бору сфагново-багульниковом – 45,
в бору остепненном травяном – 89%.
В пустынях Тау-Кум процент видов с микоризой в разных ассоциациях составляет от 42 до 69%.
Значение микоризы в связи с ее широким распространением огромно. Многие растения – орхидные и вероятно вересковые, а также некоторые деревья без микоризы развиваются плохо или даже вообще не развиваются либо из-за недостатка питательных веществ в их мелких семенах, либо из-за недостаточного развития сосущих частей корешков, а также на бедных минеральными питательными веществами почвах. Грибы, образующие эндотрофную микоризу на их корнях, могут существовать лишь в кислой среде. Именно благодаря им многие представители орхидных и вересковых потому и живут только на кислых почвах. Следовательно, наличие в фитоценозе грибов, образующих микоризу, в значительной степени определяет видовой состав высших растений, входящих в этот фитоценоз, и служит немаловажным фактором в их борьбе за существование между растениями, поскольку отсутствие микоризы у растений, склонных к микотрофномy питанию, замедляет темпы их развития и ухудшает их положение по отношению к более быстро развивающимся видам, использующим микоризу.