
- •163.Чем бозоны отличаются от фермионов?
- •Что такое функция распределения частиц по энергетическим состояниям?
- •Что такое плотность электронных состояний?
- •Что такое функция распределения Бозе–Эйнштейна?
- •Что такое функция распределения Ферми–Дирака?
- •Чем вырожденный идеальный газ бозонов отличается от невырожденного идеального газа?
- •Какие существуют основные типы кристаллов?
- •Что происходит с энергетическими уровнями атомов (молекул) при объединении их в кристалл?
- •Как преобразуются одноэлектронные волновые функции при объединении атомов в кристалл?
- •Что такое энергетические зоны? Как они возникают?
- •Чем различается заполнение энергетических зон электронами в проводниках, полупроводниках и изоляторах?
- •Что такое работа выхода для данного вещества? Покажите ее на энергетической схеме?
- •Как распределены электроны по энергиям в зоне проводимости металла?
- •Как вычислить уровень Ферми для данного вещества?
- •Каким свойствами обладает уровень Ферми в металлах при низкой температуре? Как он зависит от температуры и от концентрации свободных электронов?
- •Где находится и как зависит от температуры уровень Ферми в чистых полупроводниках?
- •Где находится и как зависит от температуры уровень Ферми в примесных полупроводниках?
- •Как выглядят одноэлектронные волновые функции в идеальном кристалле (функции Блоха)?
- •Что такое квазиимпульс электрона в кристалле?
- •Что такое зоны Бриллюэна? Где они находятся? Как связаны с «длинами волн» одноэлектронных волновых функций?
- •Что такое эффективная масса электрона в кристалл?
- •Почему эффективная масса электрона в кристалле, вообще говоря тензор?
- •Выпишите основные уравнения динамики электронов в кристаллической решетке?
- •Что такое дырки? Каковы их заряд и масса?
- •Как связана электропроводность кристалла со структурой заполнения энергетических зон?
- •Как и почему зависит концентрация свободных носителей в проводнике и полупроводнике от температуры?
- •Чем определяется концентрация свободных электронов и “дырок” в полупроводниковом кристалле?
- •Что такое донорная и акцепторная примесь? Как они влияют на энергетический спектр электронов в полупроводнике?
АТ_ФИЗ_теормин_ВОПР.doc
163.Чем бозоны отличаются от фермионов?
Бозо́н (от фамилии физика Бозе) — частица с целым значением спина. Бозоны, в отличие от фермионов, подчиняютсястатистике Бозе — Эйнштейна, которая допускает, чтобы в одном квантовом состоянии могло находиться неограниченное количество одинаковых частиц. Системы из многих бозонов описываются симметричными относительно перестановок частицволновыми функциями.
Различают элементарные бозоны и составные.
Элементарные бозоны являются квантами калибровочных полей, при помощи которых осуществляется взаимодействие элементарных фермионов (лептонов и кварков) в Стандартной модели. К таким калибровочным бозонам относят:
фотон (электромагнитное взаимодействие),
глюон (сильное взаимодействие)
W± и Z-бозоны (слабое взаимодействие).
Кроме этого, к элементарным бозонам относят не обнаруженные до настоящего времени гравитон (гравитационное взаимодействие) и бозон Хиггса, ответственный за механизм появления масс в электрослабой теории.
Все элементарные бозоны, за исключением W± — бозонов, являются незаряженными. W+ и W− бозоны по отношению друг к другу выступают как античастицы. Калибровочные бозоны (фотон, глюон, W± и Z-бозоны) имеют единичный спин. Гипотетический гравитон — спин 2, и бозон Хиггса — спин 0.
К составным бозонам относят многочисленные двухкварковые связанные состояния, называемые мезонами. Как и у любых бозонов, спин мезонов является целочисленным, и его значение, в принципе, не ограничено (0,1,2,3,…). Другими примерами бозонов являются ядра, содержащие чётное количество нуклонов (протонов и нейтронов).
Фермио́н — частица (или квазичастица) с полуцелым значением спина. Своё название получили в честь физика Энрико Ферми.
Примеры фермионов: кварки (они формируют протоны и нейтроны, которые также являются фермионами), лептоны (электроны, мюоны, тау-лептоны, нейтрино), дырки (квазичастицы в полупроводнике)[1].
Фермионы подчиняются статистике Ферми — Дирака: в одном квантовом состоянии может находиться не более одной частицы (принцип Паули). Принцип запрета Паули ответственен за стабильность электронных оболочек атомов, делая возможным существование сложных химических элементов. Он также позволяет существовать вырожденной материи под действием высоких давлений (нейтронные звёзды). Волновая функция системы одинаковых фермионов антисимметрична относительно перестановки двух любых фермионов. Квантовая система, состоящая из нечётного числа фермионов, сама является фермионом (например, ядро с нечётным массовым числом A; атом или ион с нечётной суммой A и числа электронов).