
- •43. Нестационарные временные ряды. Метод разностей и интегрируемость.
- •44. Оценка порядка интегрируемости. Тесты на единичный корень. Интеграционная статистика Дарбина-Уотсона
- •45. Оценка порядка интегрируемости. Тесты Дики-Фуллера
- •46. Модификации теста Дики-Фуллера для случая автокорреляции
- •47. Модели arima. Идентификация модели и оценивание пар-ров.
- •48.Общая хар-ка моделей с распределенным лагом и моделей авторегрессии. Интерпретация пар-ов моделей с распределенным лагом и моделей авторегрессии.
- •49.Изучение структуры лага и выбор вида модели с распределенным лагом. Модели Алмон.
- •50. Изучение структуры лага и выбор вида модели с распределенным лагом. Метод Койка
- •51. Панельные данные. Анализ двухпериодной модели.
- •52.Панельные данные. Обобщение на более чем два периода наблюдений
43. Нестационарные временные ряды. Метод разностей и интегрируемость.
Реальные временные ряды, харак-щие экон-ие процессы, как правило не стационарны. Обычно эти ВР содержат тренд (возраст-щий, убыв) илиимеют колебания на фоне общего тренда. Также возможно наличие гетероскедастичности и изменяющейся автокорреляции. Ряд нестационарен, если среднее или дисперсия данного ряда изменяются во времени, а также если ковариация зависит от конкретных моментов времени ее изменения.. Типичные примеры ВР: ставка обменных курсов индустриально развитых стран, напр, доллора и йеней, показатели ВВП и тд. Для реальных эконом. процессов осн причиной, вызывающей нестационарность ВР, является высокая инерционность внезапного воздействия (шока) на ВР. Во время эконом-ого спада или бума основные макроэконом-ие показатели имеют сильные изменения и остаются на новом уровне в течение длительного промежутка времени, не возвращаясь к своему прежнему положению. Для получения критерия, который м.б. бы использовать для выявления нестационарности рядов, рассмотрим авторегрессионный процесс Yt первого порядка: Yt=α 0+α 1Yt-1+ε t. Между стац и нестац ВР имеется существенное отличие – единовременное шоковое воздействие на стацион-ый ряд носит временный хар-ер. Со временем эффект рассеивается, и значения временного ряда возвращаются к своему долгосрочному среднему значению. След-но, долгосрочный прогноз стационарного ряда сходится к безусловному среднему. Для облегчения идентификации стационарных рядов будем использовать след св-ва: 1.Уровни ряда колеблются вокруг постоянного долгосрочного среднего значения. 2.Временной ряд имеет постоянную, не зависящую от времени дисперсию. 3.Временной ряд имеет теоретическую коррелограмму, которая убывает при возрастании длины лага. Метод разностей и интегрируемость. Большинство экон-их ВР нестационарны, но многие методы и модели основаны на предположении о стационарности ВР. Во многих случаях взятие разностей временных рядов позволяет получить стационарные ВР. Т.е. вместо знач-ия ур-ни Х1, Х2, …, Хn рассм их разность: ΔХ1=Х2-Х1, ΔХ2=Х3-Х2 и тд. Первые разности стохастического процесса имеют вид: (1-L)Xt=ΔXt=Xt - Xt-1. Или для сезонного процесса с длиной периода s: (1-Ls)Xt=ΔsXt=Xt - Xt-s Если первые разности ряда xt стационарны, то ряд xt называется интегрируемым первого порядка. В противном случае дальнейшее взятие разностей приведет ко вторым разностям: (1-L)2Xt=Δ2Xt =ΔXt - ΔXt-1. Если этот ряд стационарен, то ряд xt называется интегрируемым второго порядка. Если мы получаем первый стационарный ряд после k-кратного взятия разностей, процесс называется интегрируемым к-го порядка.
44. Оценка порядка интегрируемости. Тесты на единичный корень. Интеграционная статистика Дарбина-Уотсона
И
нтеграционная
статистика Дарбина-Уотсона явл наиболее
простым способом проверки на стационарность
ВР Интегр статистика Д-У (IDW)
разработана для авторегрессии
первого пор Yt=α1Yt-1+ε t.(1).
Данная статистика
имеет
след вид:
где
yt
—ВР,
являющийся реализацией процесса Yt;
—
выборочная
средняя по данному ВР. Если временной
ряд уt
— нестационарный,
т.е. в уравнении (1) α1=1,
то в числителе получим Σ(yt-yt-1)2=Σ
ε t2.
Для нестационарного
ряда это отношение будет близко к 0.
Можно сказать, что процесс уt
—
не стационарный,
если IDW≈0,
и уt
— стационарный,
если IDW≈2.
Зам:
Утверждение о стационарности процесса
не требует подтверждения рез-тами других
тестов, однако нестационарность ставит
задачу определения порядка интегрируемости
либо заключения о том, что процесс
неинтегрируем вообще. Обычно не известно
заранее, какие компоненты содержит ВР,
включает ли он свободный член или тренд.
Поэтому использование интеграционной
статистики Д-У на этапе оценки
интегрируемости ВР без применения
дополн-ых тестов может привести к
ошибочным выводам. Для оценки стационарности
или порядка интегрируемости данных ВР
необх-мо сопоставить расчетные значения
IDW-статистики
с критическими. Зам.
Поскольку распределение IDW-статистики
не соответствует ни одному из известных
теоретических распределений, критические
значения будут представлены не единичными
значениями, а отрезком. Критические
значения применяются для проверки
гипотезы Н0
:
IDW=2
(процесс стац-ный) и альтернативной ей
гипотезы Н1
:
IDW≠2
(процесс не явл стац-ным). А также гипотезы
H*0
: IDW=0
(процесс нестац-ный) и альтернативной
гипотезы H*1
IDW≠
0 (процесс
не явл нестац-ным).